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ABSTRACT 
Introduction. Magnetic Resonance Imaging (MRI) coils technology is a powerful improvement for clinical diagnostics. This in-
cludes opportunities for mathematical and physical research into coil design.
Aim. Here we present the method applied to MRI coil array designs.
Material and methods. Analysis of literature and self-research.
Results. The coils that emit the radiofrequency pulses are designed similarly. As much as possible, they deliver the same 
strength of radiofrequency to all voxels within their imaging volume. Surface coils on the other hand are usually not embed-
ded in cylindrical surfaces relatively close to the surface of the body.
Conclusion. The presented here results relates to the art of magnetic resonance imaging (MRI) and RF coils design. It finds par-
ticular application of RF coils in conjunction with bore type MRI scanners.  
Keywords. field strength 1.5 Tesla, magnetic resonance imaging, radio frequency coil
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Introduction
Radio Frequency (RF) coil is commonly used in con-
figurations for MR imaging,

1-9 The RF signal emitted by 
tissue is detected by monitoring the alternating volt-
age induced in antenna wires near the patients.10 These 
coils may be used also as to transmit the radio frequen-
cy pulses that are applied to the patient, or that sepa-
rate coils may transmit the radio frequency emitted by 
the tissue may be detected using receive only coils.12 
The theoretical basis for the electromagnetic analysis is 
the solution of Maxwell equation for the electric field 

expressed in the terms of the vector and scalar poten-
tials.10-15

a ‒ radious of RF coil, L ‒ total length of the coil, r (Φ, z) ‒ current vector

Introduction to Radio Frequency (RF) coil

Radio Frequency (RF) coil is commonly used in configurations for MR imaging,
1-9 The RF signal 

emitted by tissue is detected by monitoring the alternating voltage induced in antenna wires near the 

patients.10 These coils may be used also as to transmit the radio frequency pulses that are applied to the 

patient, or that separate coils may transmit the radio frequency emitted by the tissue may be detected 

using receive only coils.12 The theoretical basis for the electromagnetic analysis is the solution of 

Maxwell equation for the electric field expressed in the terms of the vector and scalar potentials.10-15

∇ ×𝐸𝐸$⃗ = −
𝜕𝜕𝐵𝐵$⃗
𝜕𝜕𝜕𝜕

∇ ×𝐵𝐵$⃗ = 𝜇𝜇𝚥𝚥 + 𝜇𝜇𝜇𝜇
𝜕𝜕𝐸𝐸$⃗
𝜕𝜕𝜕𝜕

ε∇ ∙𝐸𝐸$⃗ = 𝜌𝜌 

∇ ∙𝐵𝐵$⃗ = 0 

(Equ. 1).
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Maxwell’s equations form the basis for any electro-
magnetic field analysis. They describe them in an ex-
haustive way and allow for full analysis. The Lorenzt 
gauge condition is used to eliminate the scalar potential 
and with harmonic time dependence.16-18 Bx component 
is symmetric along the XZ, YZ, and XY planes there-
fore static B1 field characteristic, static coil geometry and 
vector current density is defined. 
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The RF field can be expressed in terms of radial Bρ and azimutal  Bφ components of the magnetic field: 

(Equ. 2.7).  

Receiving coils needed to be designed and positioned so that they are maximally sensitive to emitted 

radio frequency signals, that is so that they have the largest possible voltage induced in them by the radio 

frequency signals emitted by the tissue.28  

The approximation is made as accurate as necessary by increasing the number of such monopoles. Any 

two consecutive monopoles are defined as a V-shaped dipole over which a testing function is defined. 

Satisfying the boundary conduction that the current vanishes at both ends of the dipole. The n-th testing 

function is non zero only when the V-shaped dipole corresponds to the V-shaped dipole and zero 

otherwise. The analysis of electromagnetic fields in today's era is carried out by specialized software 

packages (Fig. 1).29-32 The enormous development of numerical methods, which has become possible as 

a result of the continuous increase in computing power of computers caused that very complex 3D 
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The RF field can be expressed in terms of radial Bρ 

and azimutal  Bφ components of the magnetic field: 

Bx = Bρ cosϕ – Bφ sinφ (Equ. 2.7). 

Receiving coils needed to be designed and posi-
tioned so that they are maximally sensitive to emitted 
radio frequency signals, that is so that they have the 
largest possible voltage induced in them by the radio 
frequency signals emitted by the tissue.28 

The approximation is made as accurate as neces-
sary by increasing the number of such monopoles. Any 
two consecutive monopoles are defined as a V-shaped 

dipole over which a testing function is defined. Satisfy-
ing the boundary conduction that the current vanishes 
at both ends of the dipole. The n-th testing function is 
non zero only when the V-shaped dipole corresponds 
to the V-shaped dipole and zero otherwise. The analysis 
of electromagnetic fields in today’s era is carried out by 
specialized software packages (Fig. 1).29-32 The enormous 
development of numerical methods, which has become 
possible as a result of the continuous increase in com-
puting power of computers caused that very complex 3D 
objects are analyzed. The project starts with making as-
sumptions and developing a drawing of a 3D object. Next, 
each component is assigned material properties and an 
analysis area is assumed after which the results are most 
often presented in the form of colored graphs or maps of 
the distribution of the analyzed parameters.33-38
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Figure 2 presents two types of birdcage coils. Both 
types of coils can be used in magnetic resonance sys-
tems. The proper selection of geometric dimensions as 
well as the values   of capacities included in the circuit 
define the characteristics of the coils. From the point 
of view of the principles of operation of magnetic res-
onance systems, the receiving coils are resonant cir-
cuits with strictly defined properties. The fundamental 
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and most important is the resonant frequency f0 which 
strongly depends on the geometry of the circuit. An-
other important parameter is the Q quality of the res-
onant system as well as the wave impedance. Birdcage 
type coils are practically the most used transceiver de-
vices currently in MR systems. Their structure is based 
on two rings connected with conductive rods. The num-
ber of these parallel element’s ranges from 8 to 32. Con-
densers are placed between the conductive elements.

Figure 3 presents an illustrative schematic of the MR 
system. The main element is a magnet that generates a 
constant magnetic field and induction B0 = 1.5 [T]. In-
side it there are additional coils to generate magnetic 
gradients and coils to level the field. Noteworthy is the 
BODY coil, which is the most often transceiver-receiving 
device and is built into the MR system permanently. The 
birdcage coil presented can be both a transmitting and re-
ceiving element. This type of coil allows the reception of a 
signal generated by a variable magnetic component in the 
X-Y plane. In the drawing, this vector is marked in red.

Conclusions
We discussed the major orations of MRI coils and dis-
cussed the major physical phenomenon involved in 
MRI together with RF coil design. 
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