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ABSTRACT  
Introduction and aim. Atypical or mixed presentations of neurodegenerative disorders may postpone or confound the final 
diagnosis. Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography 
(SPECT) radioligands provide target-specific information and may anticipate the diagnosis by “in vivo” detection of the neuro-
pathological substrate, as Aβ deposition, nigrostriatal dopaminergic depletion or tau inclusions. This concise review will dis-
cuss the potential of PET and SPECT imaging as a solid guide to better characterize atypical phenotypes of neurodegeneration 
in the clinical routine, with the potential to drive personalized interventions, improve cohort uniformity for clinical trials, and 
serve as biomarkers for targeted molecular therapies. 
Material and methods. Literature search was performed focusing on the role of PET and SPECT imaging in assessing  atypical 
phenotypes of neurodegeneration, using the electronic source of database  PubMed/MEDLINE and the web-based search en-
gines Google, Google Scholar.
Analysis of the literature. New disease-modifying drugs may increase their effect with early initiation, which is especially im-
portant in working persons and younger subjects presenting atypical symptoms. In older individuals, the coexistence of neu-
rodegeneration, age-related changes, cerebrovascular lesions, or depression makes challenging a definitive diagnosis.
Quantitative tools able to measure tracer distribution increase the accuracy of molecular neuroimaging creating topographic 
maps that compare subject’s data with healthy controls databases. 
Conclusion. Atypical phenotypes may be associated with quantitative key-pattern allowing a more precise and early diagnosis 
of the neurodegenerative disorder. Finally, quantitative assessment of the pathological substrates allows us to track the disease 
process and measure treatment response. 
Keywords. atypical phenotypes, neurodegenerative diseases, positron emission tomography, single photon emission comput-
ed tomography
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Introduction
Neurodegeneration is the leading cause of cognitive and 
physical disability across the globe with an increasing eco-
nomic burden for patient families and healthcare systems. 

According to the latest report by the World Health 
Organization, the global prevalence of dementia stands 
at over 55 million individuals, with a yearly increase of 
nearly 10 million cases.1

In the prodromal stage neurodegenerative disor-
ders (Nds) can debut with a continuum of non-specif-
ic symptoms and signs postponing a correct diagnosis.2 

Overlapping symptoms and comorbidities in differ-
ent diseases may be confounding, especially at an early 
stage, and makes critical the time-opportunity for new 
disease-modifying treatments.3-8   

The clinical phenotype can be the result of multiple 
different neuropathologies that synergically explain their 
detrimental role, as it happens in Alzheimer’s disease 
(AD), dementia with Lewy bodies (DLB), and Parkin-
son-dementia, typically defined by specific complex pro-
tein abnormalities, as amyloidoses, α-synucleinopathies, 
tauopathies, and transactivation response DNA binding 
protein 43 (TDP-43) proteinopathies. Their presence, 
conformation and anatomical distribution represent the 
major hallmark of histopathological diagnosis.9,10

The spreading of pathological protein deposition 
along disease-specific vulnerable neural networks can 
explain progression and may be associated with specific 
cognitive phenotype.11

Therefore, improving the pathophysiological un-
derstanding of the neurodegenerative process allows 
the development of targeted treatments and disease pre-
vention strategies, while non-pharmacological interven-
tions, such as brain training and physical rehabilitation 
techniques, may represent potential add-on treatments. 

Much effort is currently spent in translational research 
to develop disease biomarkers that enable early diagnosis, 
identify subclinical progression, and monitor treatment.

Additionally, studies on the mechanism underlying 
neurodegeneration move from clinicopathological data 
to connectome disruption, even suggesting that brain 
functional connectivity abnormalities might provide “in 
vivo” signature of molecular pathology.12

In a context of such great heterogeneity, the need for 
precise biological biomarkers is continuously growing 
and molecular imaging is playing a progressively leading 
role in the “in vivo” investigation of neurodegeneration. 
Indeed, positron emission tomography (PET) and sin-
gle-photon emission computed tomography (SPECT) 
can visualize and measure the pathophysiological pro-
cesses in the living brain using selective radioligands as 
imaging probes. PET and SPECT provide target-specif-
ic information that can identify distinct patterns related 
to neuropathological substrates and quantify the rates of 
the biological processes.

Aim
This concise review will discuss the potential of PET and 
SPECT imaging as a solid guide for improved detection 
of atypical phenotypes of neurodegenerative disorders 
in the clinical routine, including speech difficulties, vi-
sual abnormalities, executive, behavioral, and motor 
functions. 

The accuracy of clinical diagnosis remains insuf-
ficient and highly dependent on the clinician’s experi-
ence and level of expertise and the follow-up duration, 
despite many efforts of experts in determining detailed 
clinical criteria for a correct diagnosis.13

Material and methods
Literature search was performed focusing on the role of 
PET and SPECT imaging in assessing atypical pheno-
types of neurodegeneration, using the electronic source 
of database  PubMed/MEDLINE and the web-based 
search engines Google, Google Scholar.

The following search algorithm was employed: (A) 
“atypical phenotypes” AND (B) “ Alzheimer’s disease “ 
OR “Parkinson’ disease” OR “dementia with Lewy bod-
ies” OR “multiple system  atrophy” OR “parkinsonism” 
OR “primary progressive aphasia” OR “corticobasal 
syndrome/degeneration“ OR “progressive supranucle-
ar palsy” OR “posterior cortical atrophy “ OR “fronto-
temporal dementia“ OR “ amyotrophic lateral sclerosis” 
AND (C) “PET” OR “SPECT” OR “molecular imaging” 
OR “DaTscan” OR “FP-CIT” OR “MIBG” OR “amy-
loid-PET” OR “tau-PET” AND (D) “autopsy validation” 
OR “neuropathological correlation”. The authors did not 
apply any restriction concerning the publication date. 
Moreover, the authors screened the bibliography of the 
included studies searching for additional suitable arti-
cles to improve the research. The literature search was 
lastly updated on September 2023.

Analysis of the literature
PET and SPECT images as quantitative biomarkers of 
neurodegeneration
PET is the most used technique for the characterization 
of neurodegeneration profiles, being able to assess neu-
ron glucose consumption, beta-amyloid (Aβ) deposi-
tion, and dopamine neurotransmission.14-16

Most recently, tracers targeting tau inclusions in the 
brain have been entering the diagnostic roadmap pro-
viding better comprehension of neurodegenerative pro-
cesses as well as radioligands for neuroinflammation 
and microglial activation.17-19  

Dopamine system imaging has become a standard 
approach in patients with symptoms of dopaminergic 
neurodegeneration with SPECT radioligands assessing 
presynaptic (e.g. dopamine synthesis and storage, trans-
porter density) or postsynaptic terminals (i.e. D2 recep-
tors availability).20
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Highly specific imaging biomarkers and their multi-
modal combination (Fig. 1) increase diagnostic accuracy 
and may allow a better patient management, even more 
when additional symptoms, such as autonomic, pyrami-
dal or cortical sensory disturbances, are present.21,22

The diagnosis of atypical variants with high sensitiv-
ity and specificity remains a challenge in the differential 
diagnosis of different neuropathologies. In the context 
of Alzheimer’s disease it’s critical to recognize patients 
with less common syndromes such as the logopenic 
variant of primary progressive aphasia (PPA) or cortico-
basal syndrome, because patients phenotypically similar 
have non-Alzheimer’s pathology. On the other hand, the 
considerable overlap of signs and symptoms for parkin-
sonian syndromes makes clinical diagnosis challenging. 

Extraction of quantifiable features from PET and 
SPECT images may provide a more precise selection of 
patients to be included in clinical trials for neurodegen-
erative diseases with a more aggressive course, as atyp-
ical parkinsonian syndromes, with the aim to enrich 
treatment trial eligibility for disease-specific therapies, 
such as anti-tau drugs for progressive supranuclear pal-
sy (PSP) and corticobasal syndrome (CBS). 

The imaging departments are even more frequently 
asked to assist neurologists and geriatricians in defining 
the underlying neuropathology of atypical symptoms in 
clinical and research settings. 

Standardization of image acquisition and valida-
tion of the used radiotracers represent an ongoing crit-
ical challenge to obtain homogeneous and comparable 
data. The correlation of imaging measures with neuro-
pathology may also improve the identification of at-risk 
patients and the detection of possible changes result-
ing from therapy. Therefore, relationships of PET and 
SPECT results with post-mortem measurements are 
critical for validating the sensitivity and specificity of 
imaging biomarkers across clinical phenotypes of neu-
rodegeneration. In Table 1 autopsy validation studies of 
PET and SPECT imaging biomarkers are reported.23-59

To standardize imaging reporting, validated scoring 
systems have been implemented and visual assessment 

of PET images with amyloid tracers was the first step to 
stage amyloid deposition.60,61 The regulatory authorities 
require a certified reader training specific for each ra-
diotracer targeting β-amyloid.60-62 

However, the need for a more precise analysis of re-
gional tracer uptake, especially in the context of atypical 
patterns, pushed the development and clinical applica-
tion of quantitative tools to assess biodistribution. 

A commonly used approach is the region of interest 
(ROI)-based analysis with the standardized uptake val-
ue ratio (SUVR) calculation between the target regions 
and the reference region. Pons, whole cerebellum, cere-
bellar cortex, or cerebral white matter are used as refer-
ence regions as they are considered free from abnormal 
Aβ deposition.63,64

More recent methods include the Centiloid (CL) 
scale and the z-scores, both based on SUVR calculation, 
and magnetic resonance imaging (MRI)-independent 
indexes have been proposed for quantifying amyloid 
load across different tracers.65-67

Comparison of the subject’s data with a database of 
healthy controls can be used to highlight areas with sta-
tistically significant alterations68,69 and assessment of 
Z-scores defines the deviation of a sample with respect 
to the mean of a distribution. Thurfjell et al. demonstrat-
ed high concordance of amyloid imaging and an autopsy 
cohort using a threshold of z=2.0.63 Z-scores may be cal-
culated for composite cortical regions, individual regions, 
and at the voxel level obtaining maps due to the underly-
ing statistical calculations (Z-maps) that improve pattern 
recognition accuracy and facilitate differential diagnosis.69

The growing use of quantitative evaluation of PET 
and SPECT scans in the clinical context increases the 
probability of reaching a conclusive diagnosis providing 
information on the extent and regional burden of the 
neuropathologic features.70,71 

Objective data from quantification also enable an 
objective monitoring of the disease process and the bi-
ological mechanisms driving tracer accumulation.64,72,73

Finally, quantitative measures mainly support the 
nuclear medicine physician by increasing specificity and 

Fig. 1. Representative images of the most used molecular imaging techniques targeting the pathological substrates of 
neurodegeneration; from the left to the right: glucose consumption (PET with glucose analog [18F]FDG); presynaptic 
dopamine transporters function (SPECT with [123I]ioflupane also known as DaTscan); nigro-striate synthesis of dopamine 
(PET with [18F]DOPA); β-amyloid deposition (PET with [18F]flutemetamol); tau protein accumulation (PET with [18F]GTP1)
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Clinical use of molecular imaging for atypical neurode-
generation
Precise discrimination of neurodegenerative diseases 
presenting with atypical phenotypes is still challeng-
ing in daily clinical practice, especially at the early stag-
es of the disease, but accurate diagnosis is fundamental, 
because treatment and prognosis vary. Therefore, es-
tablishing imaging biomarkers is necessary for ear-
ly detection and stratification of patients according to 
the underlying disease. A summary of distinct PET and 
SPECT imaging patterns of atypical phenotypes of neu-
rodegeneration is reported in Table 2 and 3.80-121

The neurodegenerative cascade that accompanies 
amyloid deposition has been associated with multiple ce-
rebral dysfunctions, mainly affecting executive, behavior-
al and motor abilities language and visual perception. 

In a cause-and-effect relationship, it has been report-
ed that amyloid burden precedes and induces metabol-
ic changes, which could be highlighted by PET with the 
glucose analog [18F]Fluorodeoxyglucose (FDG) in the 
early stages of neurodegenerative diseases.122 Moreover, 
a temporal ordering of amyloid β and tau lesions spread 
throughout the brain has been described in Alzheimer’s 
disease, confirming that early accurate diagnosis may 
provide a window of opportunity for new treatments.123

In primary progressive aphasia amyloid-PET may 
help to predict the underlying neuropathology facilitat-
ing differential diagnosis of PPA subtypes, as in the case 
of the logopenic variant (lvPPA) most commonly asso-
ciated with AD (Fig. 2a-b). 

A recent systematic review of the literature has shown 
amyloid-PET positivity in 84.9% of lvPPA.124 Interestingly, 
in the same study amyloid-PET showed positivity in 54.5% 
of unclassified PPA suggesting underlying Alzheimer’s pa-
thology.124 On the other hand, PPA can remain isolated for 
years before the development of impairments in other do-
mains suggesting neurodegeneration and, in these cases, 
classification of PPA variants may be challenging. 

Compared to the amyloid-PET imaging, in which 
the site of deposition does not correlate with aphasic 
deficits in terms of topographic correspondence, uptake 
patterns of tau-PET differ across the PPA variants,93 al-
lowing differentiation of overlapping clinical profiles.86

Moreover, tau-PET burden provides a spatial re-
lationship with cortical regional thickness, showing a 
greater engagement of the left hemisphere in the major-
ity of patients due to the more common left-lateralized 
language networks.87 

Clustering analysis of metabolic images from FDG-
PET has been recently used to classify more PPA subtypes 
than the current recognized ones (non-fluent, semantic, 
and logopenic PPA) with distinct neuroimaging charac-
teristics and more predictive of clinical course, splitting 
non-fluent variant into three subtypes, and lvPPA into 
two subtypes.91 

Table 1. Autopsy validation studies of PET and SPECT 
imaging biomarkers of neurodegeneration*

Imaging 
biomarker

Tracer Clinical spectrum
Reference 

list

Glucose 
consumption

[18F]FDG AD/non-AD dementias 23

[18F]FDG AD vs FTD 24

[18F]FDG AD/non-AD dementias 25

[18F]FDG AD 26

[18F]FDG AD 27

[18F]FDG DLB vs AD 28

[18F]FDG DLB, AD, FTD 29

Aβ  deposition

[18F]florbetapir AD 30

[18F]florbetapir AD 31

[18F]florbetaben AD 32

[18F]flutemetamol AD 33

[18F]flutemetamol AD/non-AD dementias 34

[18F]flutemetamol AD 35

[11C]-PIB AD 36

[11C]-PIB) vs [18F]FDG vs AD/non-AD dementias 37

[11C]-PIB FTD 38

DAT binding

[123I]FP-CIT DLB 39

[123I]FP-CIT DLB 40

[123I]FP-CIT DLB/AD 41

[123I]FP-CIT + [1F]FDG DLB 42

[11C]Altropane + 
[11C]-PIB

DLB 43

[123I]FP-CIT CBD 44

[123I]FP-CIT DLB/other dementias 45

[123I]FP-CIT Parkinsonism (differential diagnosis) 46

[123I]FP-CIT MSA/PD 47

Postganglionic 
cardiac 
sympathetic 
denervation 

[123I]MIBG DLB 48

[123I]MIBG DLB 49

[123I]MIBG DLB 50

Tau 
accumulation

[18F]flortaucipir AD 51

[18F]flortaucipir + [18F]
florbetapir

PPA 52

[18F]flortaucipir
AD, CAA, PiD, PSP, CBD, FTLD-TDP-43, 

DLB, MSA, HC
53

[18F]flortaucipir AD/non-AD, primary tauopathies 54

[18F]flortaucipir + 
11C-PIB

FTD 55

[18F]flortaucipir AD/non-AD 56

[18F]flortaucipir AD/non-AD dementias 57

[18F]flortaucipir AD 58

[18F]flortaucipir AD 59

* AD – Alzheimer’s disease, DLB – dementia with Lewy 
bodies, FTD – frontotemporal dementia, MSA – multiple 
system atrophy, PPA – primary progressive aphasia, PSP 
– progressive supranuclear palsy, CBD – corticobasal 
degeneration, PiD – Pick’s disease, CAA – cerebral amyloid 
angiopathy, TDP-43 – frontotemporal lobe degeneration 
(FTLD)-transactive response DNA binding protein-43, HC – 
healthy control

diagnostic confidence in reading and interpreting brain 
scans.74 

Development and validation of quantitative meth-
ods for brain molecular imaging is continuously ongo-
ing even with the support of machine learning and deep 
learning algorithms.75-79 
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Table 2. Summary of distinct patterns in PET imaging of atypical phenotypes of neurodegeneration*
Clinical spectrum FDG PET Amyloid PET TAU PET

Typical AD
Posterior cingulate, precuneus and temporal-parietal 

associative cortex hypometabolism80

Diffuse tracer accumulation across the cerebral 
cortex, according to Thal’s stages81

Intense tracer retention in the parietal lobes,(especially 
precuneus, and posterior cingulate) and mesial basal 

temporal structures82

Frontal AD
Greater medial and orbital frontal hypometabolism 

compare to typical AD83

Diffuse tracer accumulation across the cerebral 
cortex indistinguishable from typical AD81

Classic temporo-parietal tracer retention with potential 
involvement of frontal areas (>lateral)84

Logopenic PPA
Hypometabolism in left, middle. superior temporal areas 
with less involvement of right medial temporal area and 

posterior cingulate85

Diffuse tracer accumulation across in the 
cerebral cortex without a clear topographic 

correspondence89

Asymmetric, left greater than right temporoparietal 
language regions tracer retention87

PCA
Bilateral occipitoparietal hypometabolism88 Diffuse tracer accumulation across the cerebral 

cortex88

Parieto-occipital tracer retention with less retention 
compared to typical AD in the hippocampus88

bvFTD + ALS

Hypometabolism in frontal association cortex and 
anterior temporal lobe, usually asymmetric89

Frontotemporal and insular cortex hypometabolism with 
the basal ganglia and the thalamus involvement135

Until 38% percent of positivity with different 
grading of binding, increasing with age of the 

patients.
GRN mutation > C90RF72 expansion. Not 

reported for MAPT mutation138

Increased tracer retention in the temporal lobes, temporal 
white matter, and basal ganglia90

Nonfluent PPA

Two main subtypes of hypometabolism:
-1: more confined to dominant lobe with involvement of 
superior temporal and inferior frontal gyri (more related 
to TDP-43 type A proteinopathy, can evolve to dementia)

-2: more medial bilateral frontal lobe involvement 
(possible evolution to PSP)91

10% of positivity (similar or slightly lower than 
normal individuals)92

Accrual in white matter of the prefrontal lobe, including 
orbitofrontal, inferior, middle and superior regions, and 

temporal lobe, with greater uptake in the left hemisphere.
Involvement even of subcortical grey matter structures, 

including bilateral thalamus, putamen and globus pallidus93

Semantic  PPA

Hypometabolism in the whole left temporal lobe, right 
temporal pole, left thalamus94

15% of positivity  (similar or slightly lower than 
normal individuals)92

Accrual mainly in temporal pole, inferior and middle 
temporal gyri, fusiform gyrus, amygdala, parahippocampal 

gyrus and entorhinal cortex, with left prevalence. TAU 
Positivity might also be present in TDP-43 proteinopathy 

(focal TAU or off-target binding?)93

CBS

Asimmetric hypometabolism in frontoparietal lobe and 
striatum95

-In CBD pathology: > basal ganglia
-In AD pathology: > lateral parietal, temporal lobe, 

posterior cingulate
-in CBS-PSP pathology: > medial frontal regions and the 

anterior cingulate96

Percentage of AD pathology ranges from 13% 
to 24%97

Binding in precentral lobe, midbrain, putamen, globus 
pallidus, thalamus, corticospinal tract with asymmetric 

feature in CBS-CBD differently from CBS AD and CBS-PSP95

PSP

Hypometabolism in medial frontal cortex, striatum and 
brainstem95

Positivity until 40% in patients with clinical 
features suspicious for PSP98

Engagement of subthalamic areas, midbrain, and cerebellar 
white matter.

Involvement of the neocortex in the advanced stages of the 
disease95

MSA
Hypometabolism in cerebellum, putamen and 

brainstem95

Not reported amyloid accrual Not reported TAU binding, except for retention in posterior 
putamen perhaps related to interaction with iron 

deposition93

DLB

Hypometabolism in parieto-occipital cortex, temporal 
lobes, substantia nigra and thalamus.

Compared to AD, preservation of medial temporal areas 
and posterior cingulate metabolism (“cingulate island 

sign”)95

High Aβ values are observed until 60% of the 
DLB patients, often reflecting mixed pathology.

The amount of B-amyloid uptake is lower in 
“pure” AD cases compared to the patients 

affected by an AD/DLB pathology99

In “pure” DLB not differences of accrual compared to 
controls100

* AD – Alzheimer’s disease, PPA – primary progressive aphasia, PCA – posterior cortical atrophy, FTD – frontotemporal 
dementia, ALS – amyotrophic lateral sclerosis, CBS – corticobasal syndrome, PSP – progressive supranuclear palsy, MSA – 
multiple-system atrophy, DLB – dementia with Lewy bodies

Speech difficulties may also represent an early mark-
er of motor abnormalities in Parkinson’s disease (PD).125 

Recent data have shown that uptake of [123I]FP-
CIT (DaTscan), a radioligand with high binding affin-
ity for presynaptic dopamine transporters (DATs), is 
lower in the striatum (p<0.001), caudate (p=0.003) and 
putamen (p=0.003) in Parkinson’s disease patients with 
speech difficulties than in patients without speech ab-
normalities.126 

Figure 3 shows the DAT-SPECT of a subject with 
speech abnormalities, akinetic phenotype and auto-
nomic dysfunction.

A challenging common presentation in the spec-
trum of Lewy body disorders including PD and DLB is 
autonomic dysfunction. In patients with PD autonomic 
dysfunction is associated with  a more rapid disease pro-
gression and shorter survival and may include orthostatic 
hypotension, bladder disturbances, gastrointestinal mal-
function, cardiovascular dysregulation and sexual dys-
function.127

Severe cardiac sympathetic degeneration occurs in 
DLB, but not AD, offering a potential target for molec-
ular imaging. Scintigraphy with [123I]meta-iodobenzyl-
guanidine (MIBG), an analogue of norepinephrine that 
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Table 3. Critical outcomes of SPECT imaging biomarkers in differentiating clinical presentations of neurodegeneration*

Clinical spectrum
[123I]FP-CIT

(DAT imaging)
[123I]MIBG

(sympathetic innervation)
[123I]FP-CIT + [123I]MIBG

(combined imaging)

PD
Differential diagnosis from Parkinsonism with 

authopsy validation46

Differentiation of PD and MSA47

Differentiating PD from other neurodegenerative parkinsonism50,112

Differentiation of PD and MSA118

Differentiating PD from other 
neurodegenerative parkinsonian 

syndromes121

DLB

Specificity of 90.4% for excluding non-DLB dementia 
(101)

Loss of striatal DAT binding more intense in the 
putamen than in the caudate (43,101)

Class I evidence that [123I]-FP-CIT accurately identifies 
patients with DLB (40,102,103)

Authopsy validation39,40,41,43,46

High sensitivity and specificity of MIBG myocardial scintigraphy for 
differentiating PD from other neurodegenerative parkinsonism in 

both early and delayed imaging phases112

Class II evidence that reduced cardiac uptake of 123I-MIBG  
accurately identifies patients with DLB and cardiac sympathetic 

denervation113

Early and delayed H/M ratio strongly correlate with residual cardiac 
sympathetic nerve fibers114,115

3-year follow-up of 133 patients confirms high correlation between 
abnormal cardiac MIBG and clnical diagnosis of DLB with early and 

delayed H/M ratio 2.51 and 2.20116,117

Sensitivity and specificity of combined 
techniques in differentiating DLB from AD 

96.1 and 90.7 %, respectively120,121

MSA

Severe decrease DAT binding and higher asymmetry in 
MSA-P than in MSA-C104-107

Higher striatal uptake in MSA-C variant (probably due 
to predominant degeneration of ponto-cerebellar 

rather than nigrostriatal pathways)106,108

MIBG scintigraphy distinguish between PD and MSA, and between 
AD and DLB (H/M ratio 1.77 with 94% sensitivity and 91%  

specificity)116

Most MSA patients show a normal myocardial MIBG uptake (118)
MSA-P patients show a mild cardiac sympathetic dysfunction 

without any correlation to disease duration119

PSP
More intense decreased DAT binding compared to 

PD and MSA-P in both caudate and putamen (higher 
putamen/caudate ratio)104,105,109,110

CBS
Mild-to-moderate reduction of striatal presynaptic 
dopamine uptake with greater uptake asymmetry 

compared to PD111,44,110

* PD – Parkinson disease, DLB – dementia with Lewy bodies, MSA – multiple-system atrophy, MSA-P – MSA with 
predominantly parkinsonian signs, MSA-C – MSA with cerebellar features, PSP – progressive supranuclear palsy, CBS 
– corticobasal syndrome, DAT – dopamine transporte, [123I]FP-CIT – [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-
iodophenyl)nortropane), [123I]MIBG – [123I]metaiodobenzylguanidine 

assesses the post-ganglion peripheral autonomic nervous 
system, has been used as a non-invasive method to assess 
myocardial sympathetic nerve damage. The DLB Con-
sortium consensus report recommends MIBG scanning 
as a biomarker of DLB.128 Calculation of  MIBG uptake 
using the heart-to-mediastinum (H/M) ratio provides a 
semiquantitative diagnostic index for distinguishing DLB 
from AD with high specificityand an autopsy study has 
validated the diagnostic accuracy of MIBG cardiac scin-
tigraphy for DLB revealing that residual cardiac sympa-
thetic fibers strongly correlate with H/M ratios.114,116,129 A 
recent paper has provided a Class I evidence that cardi-
ac MIBG scintigraphy using the H/M indicator may also 
distinguish mild cognitive impairment with Lewy bodies 
from mild cognitive impairment due to AD.130

In Figure 4, the assessment of cardiac autonomic in-
nervation with MIBG-SPECT in subjects with DLB and 
AD is represented. 

Low MIBG uptake associated with autonomic dys-
function (mild memory disorder, constipation/postur-
al hypotension, depression/anxiety, visual hallucination/
psychosis, REM sleep disorder) may detect PD very early 
in the pre-motor phase according to the multiple Braak 
stages on the pathological accrual of α-Synuclein.131,132

Accumulating evidence shows that Lewy body dis-
orders affect central and peripheral autonomic nervous 

systems requiring the combination of both [123I]FP-
CIT and MIBG imaging to provide early and accurate 
diagnosis and appropriate treatment.120,121 

An additional topic in the diagnostic work-up of 
patients with DLB is distinguishing them from those 
with AD or mixed pathology. The role of amyloid-PET 
imaging in this clinical context is established and low-
er amyloid tracer uptake accurately distinguishes cases 
with DLB.96 However, high Aβ values are observed in up 
to 60% of the DLB patients, often reflecting mixed pa-
thology. Interestingly, the amount of β-amyloid uptake 
is lower in “pure” AD cases compared to the patients 
affected by an AD/DLB pathology, with lesser involve-
ment of the occipital regions in the former.133 

Challenging fields are continuously emerging in the 
world of neurodegeneration with a high need for reli-
able imaging biomarkers supporting clinical features 
to reach a correct diagnosis and prognostic assessment 
(Table 2, 3), especially for disorders with more aggres-
sive courses as atypical parkinsonism and amyotrophic 
lateral sclerosis (ALS). PET and SPECT imaging are in-
creasingly used in these settings with earlier onset, faster 
progression, and poor response to treatment, aiming to 
resolve the initial diagnostic uncertainty.

In Multiple System Atrophy (MSA) FDG-PET 
shows a reduced metabolism in the cerebellum, 
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Fig. 2. Amyloid-PET with [18F]flutemetamol in subjects with primary progressive aphasia (PPA) – A): A case of semantic 
variant of PPA with negative amyloid-PET: representative axial sections show low retention of the tracer in the cortical grey 
matter confirmed by the Z-score images obtained from quantitative analysis, B): A case of logopenic PPA with positive 
amyloid-PET suggesting underlying Alzheimer’s pathology: representative axial sections show diffuse increased retention 
of [18F]flutemetamol in the cortical gray matter and Z-score images  show all pixels with a deviation above the mean of the 
normal controls in number of standard deviations (cut-off value +2 SD); quantitative analysis was performed using CortexID 
Suite, GE Healthcare®, pons as reference region

A

B
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Fig. 3. Visual and quantitative analyses of DaTscan SPECT in a patient with Parkinson disease associated with speech 
abnormalities, akinetic phenotype and autonomic dysfunction, axial section shows reduced [123I]FP-CIT uptake in the right 
caudate and in both the putamen, quantitative assessment of tracer uptake (DaTQUANT software, GE Healthcare®) confirms 
the visual findings, but also indicates reduced uptake in the left caudate compared to normal controls

Fig. 4. Assessment of autonomic dysfunction in the differential diagnosis of DLB from Alzheimer’s disease. Amyloid deposition, 
evaluated with 18F-Flutemetamol PET, is increased in both cases with a global z-score +5.30 SD in the AD subject (upper 
axial PET images) and +5.16 SD in the DLB case (lower axial PET images), cardiac MIBG uptake is intense in the AD case (upper 
static image) with H/M uptake ratio 2.4, obtained 15–20 min after tracer administration, while in the DLB case (lower static 
image) MIBG uptake is dramatically reduced with H/M uptake ratio 1.2, reflecting the myocardial sympathetic nerve damage, 
quantitative software for amyloid-PET analysis: CortexID Suite, GE Healthcare®, cut-off value +2 SD, pons as reference region
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putamen, and brainstem regions compared to PSP, in 
which the medial frontal cortex, prefrontal areas, stri-
atum, and brainstem are preferentially involved.95,133 
In Corticobasal Syndrome, the critical element is the 
asymmetric decrease of brain metabolism, engaging 
mainly the frontoparietal lobe and striatum.95,96 In PSP 
patients,  the tau-PET may show the engagement of the 
subthalamic areas, midbrain, and cerebellar white mat-
ter with the further involvement of the neocortex in the 
advanced stages of the disease.95 Moreover, FDG-PET 
may be used as a gatekeeper method to select patients 
candidates to the second level or more expensive imag-
ing as tau-PET.133 

Recent studies have also shown the diagnostic val-
ue of FDG-PET in identifying ALS from controls with 
most discriminating hypometabolism in the prefrontal 
and premotor cortex and relative hypermetabolism in 
the occipital cortex, cerebellum, upper brain stem, and 
medial temporal cortex).135-138 Metabolic pattern of  ALS 
on FDG-PET imaging is presented in Figure 5. 

A higher mortality rate has been revealed in the 
presence of extensive frontotemporal hypometabo-
lism.136,137 A precise definition of neurodegeneration 
pathophysiology could shorten the period from symp-
tom onset to diagnosis and allow earlier interventions.

An additional source of diagnostic uncertainty 
that patients with neurodegenerative disease frequent-
ly experience are visual alterations and neuropsychiatric 

symptoms (NPS) that may be mistaken for a psychiat-
ric disorder. 

Visual symptoms can present as independent and 
early signs of neurodegenerative disease and they may 
determine a challenge in the patient’s life including re-
peated appointments with eye specialists, eventual 
unnecessary surgeries (e.g., cataract removal) and diag-
nosis delay. 

A recent survey among neuro-ophthalmologists 
demonstrated that at least 5–10% of new patients re-
ferred to them had a previous diagnosis of a neurode-
generative disease. For new patients without a diagnosis 
of neurodegeneration, visual complaints were attributed 
to undiagnosed neurodegenerative disease in more than 
5% of cases.139 

Interestingly, 40% of the interviewed neuro-oph-
thalmologists indicated the lack of tools to assess visual 
dysfunction due to neurodegeneration as a barrier to a 
specific diagnosis.139

In these cases the quantitative assessment of glucose 
metabolism, amyloid deposition or tau accumulation 
may guide accurate diagnosis and patient management 
providing information about regional, particularly oc-
cipital, involvement in FDG, amyloid- or tau-PET.

Recently, dysfunction of visual contrast sensitivity 
has been strongly associated with cerebral deposition of 
amyloid plaque and tau protein, primarily in temporal, 
parietal and occipital brain regions.140 In Figure 6, am-

Fig. 5. Metabolic pattern of amyotrophic lateral sclerosis on FDG-PET. Representative sagittal and axial PET images (upper 
pictures) show hypometabolism in the prefrontal and premotor cortex associated with symmetric relative hypermetabolism 
in the occipital cortical pole and in the cerebellum, z-score images (lower picture) confirm significant hypometabolism in 
the prefrontal and premotor cortex showing all pixels with a deviation below the mean of the normal controls in number of 
standard deviations (cut-off value -2 SD), quantitative software: CortexID Suite GE Healthcare®, pons as reference region
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yloid-PET images are presented in subjects with visual 
contrast sensitivity alterations.

In posterior cortical atrophy (PCA), the paradig-
matic neurodegenerative disease impairing visuospatial 
perceptions and mainly due to Alzheimer’s disease pa-
thology, FDG-PET hypometabolism in occipital regions 
correlates with a highly regional concordance with hy-
per-fosforilated tau accrual. In contrast, the amyloid 
burden is more diffuse along the neocortex, although 
a possible link between amyloid deposition in the pri-
mary visual cortex and the onset of visuospatial impair-
ment has been suggested.88,141

Furthermore, the phenotypic PCA heterogeneity 
can be disentangled, through the assessment of glu-
cose metabolism, highlighting the primary involvement 
of either the right or left hemisphere and the ventral or 
dorsal visual streams.142 

The presence of NPS is an independent risk fac-
tor for cognitive impairment, faster decline and poor-
er outcomes in functional status and quality of life.143,144 
Among NPS, delusions and delirium are the most asso-
ciated with worse cognitive and functional outcomes.145 

Neuropsychiatric symptoms and cognitive decline are 
both signs of similar brain pathologies; thus it is cru-
cial to investigate the underlying pathway linking NPS 
to neurodegeneration.

Assessment of amyloid deposition with PET might 
help in selected cases of NPS with slight cognitive defi-
cits. In cases of major depression with episodes of tran-
sient amnesia, a normal amyloid-PET might contribute 
to confirming a psychiatric disorder, especially when 
the clinical history is suggestive of depression, but neu-
ropsychological assessment has shown some cognitive 
deficits.

Recently, great attention has been paid to the rela-
tionship between depressive symptoms and neuroimag-
ing biomarkers, such as glucose metabolism or amyloid 
deposition, that appear distinctly related.146

Touron et al. have shown that preclinical depressive 
symptoms are associated with glucose hypometabolism 
in the brain areas particularly susceptible to AD, such 
as the hippocampus, amygdala, the precuneus/posterior 
cingulate cortex, the medial and dorsolateral prefrontal 
cortex, insula, and the temporoparietal cortex, and in-

Fig. 6. Alterations in visual contrast sensitivity and cerebral deposition of β amyloid, representative left sagittal images of 
amyloid-PET with 18F-flutemetamol in two subjects with dysfunction of visual contrast sensitivity; in one case (left picture), 
Aβ accumulation was detected by PET in the occipital lobes (right z-score +7.61 SD, left +9.76 SD) suggesting Alzheimer’s 
disease-related pathophysiology; in the second case (right picture), amyloid-PET showed a normal tracer retention in the 
occipital lobes (right z-score +1.70 SD, left +1.81 SD), quantitative software: CortexID Suite GE Healthcare®, z-score cut-off 
value +2 SD, pons as reference region

Fig. 7. Neuropsychiatric symptoms associated with elevated Aβ deposition and cognitive decline as early markers of 
Alzheimer’s disease, representative axial sections of amyloid-PET with [18F]florbetaben in a patient with anxiety, depression 
and cognitive impairment show diffuse elevated Aβ deposition in the examined cortical regions, visual assessment of brain 
amyloid-β plaque load (BAPL) was graded as score 3, according to the method described in Barthel et al.57
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dependent of amyloid-PET results as shown in the pre-
vious studies.147-149

Older adults with cognitive impairment are at risk 
of having or developing NPS and even slight levels of 
depressive symptoms are associated with the increased 
risk of cognitive decline.150,151 

The Mayo Clinic Study of Aging has demonstrat-
ed that subjects with regional glucose hypometabolism 
(measured with FDG-PET) and depression (Beck De-
pression Inventory-II ≥13) had a more than threefold 
increased risk of incident MCI.152 

The risk was also significantly elevated for partici-
pants with anxiety (Beck Anxiety Inventory ≥10) and 
glucose hypometabolism.

On the other side, a recent systematic review has 
shown that NPS, particularly depressive and anxiety 
symptoms, are associated with higher Aβ deposition, as 
presented in Figure 7.153

Longitudinal studies have shown that baseline Aβ 
deposition and NPS have a synergistic interaction in the 
very early stages of AD154: greater baseline cortical am-
yloid and increased depressive symptoms are associated 
with more significant cognitive decline over time.155,156 

No association was revealed between NPS and tau 
pathology.153

A small percentage of people with dementia also ex-
periment with early behavioral changes – such as a dis-
regard for social norms or loss of empathy – that can 
lead to a mistaken diagnosis (i.e. behavioral variant of 
frontotemporal dementia instead of a variant of AD), 
also due to the lack of standardized clinical criteria for 
this AD phenotype.157 Assessment of brain glucose con-
sumption with FDG-PET may identify the metabolic 
pattern of the behavioral subtype of AD (bvAD). 

Hypometabolism in the frontal regions distinguish-
es frontal variant (bvAD) from typical AD, while it large-
ly matches typical AD in the posterior cingulate cortex, 
precuneus, and lateral temporoparietal regions.158 

The frontal-hypometabolism pattern in bv-AD can 
be highly comparable to behavioral frontotemporal de-
mentia (bv-FTD), leading to a significant risk of misdi-
agnosis considering the clinical features’ resemblance. 
To obtain the correct diagnosis, the amyloid-PET takes 
a lead role for its high negative predictive values since 
the absence of pathological β-amyloid rules out AD 
diagnosis with great sensibility and specificity.159 A 
large series of pathologically confirmed FTD report-
ed Aβ deposition in 38% of patients with bvFTD and 
increased progression with age, suggesting a role for 
amyloid imaging in clinical assessments of FTD syn-
dromes.81 

In a high percentage of cases, estimated at around 
12.5%, an overlap between FTD and motoneuronal dis-
ease occurs, and a more significant number of FTD pa-
tients also show subtle motor system involvement.38,160 

Recently, in such overlap conditions, an increase in glu-
cose metabolism has been observed along the brainstem 
with a shorter survival if this occurs in the medulla ob-
longata.161 

Mild behavioral impairment (MBI) is emerging as a 
novel marker of preclinical Alzheimer’s disease.162 High-
er β‐amyloid tracer uptake resulted strongly associated 
withMBI in normal elderly individuals, specifically in 
the neocortex, including the frontal cortex, followed by 
the striatum, according to the sequential stages of hier-
archical amyloidosis in AD.163,164

No significant associations have been demonstrat-
ed with tau-PET uptake, suggesting that in cognitive-
ly normal elderly MBI is not associated with tau-PET 
signal, according to the observation that considerable 
tau aggregation is rarely observed in cognitively nor-
mal older individuals, but it is present in dementia due 
to AD.163-165 

At different stages of neurodegenerative disorders, 
motor symptoms may be present, including bradyki-
nesia, extrapyramidal rigidity or spasticity. Less severe 
motor disorders such as gait slowing may occur at an 
early stage of dementia and alterations in dual-task 
performance (walking while simultaneously perform-
ing another task) is often present in elderly people with 
MCI.16,166

Motor and cognitive disorders may coexist in PD, 
ALS, PSP or CBS, and motor impairments are often as-
sociated with worse cognitive decline. Data from the 
DEMPARK/LANDSCAPE study have demonstrated 
that less severe cognitive deficits are present in trem-
or-dominant PD rather than in the akinetic variant.168 

In genetic FTD motor severity appears strictly relat-
ed to time course and the affected gene.169

Multimodal molecular imaging may improve di-
agnostic accuracy in the motor-cognitive phenotype 
setting, detecting the disease’s key neuropathological 
correlates. Tau imaging can detect tau aggregation in 
PSP and corticobasal degeneration (95) as well as DAT 
imaging is the most accurate marker for PD.170 Cardi-
ac adrenergic imaging with MIBG-SPECT may provide 
the diagnosis of pre-motor PD in patients presenting 
with mild memory impairments and other non-specific 
symptoms as autonomic dysfunction, sleep disorder, de-
pression or anxiety, visual hallucinations.112

A systematic meta-analysis including 74 studies, 
2323 patients with PD and 1767 healthy controls, has 
shown glucose hypometabolism on FDG-PET in the bi-
lateral inferior parietal cortex and left caudate nucleus, 
respectively related to cognitive deficits (inferior pari-
etal cortex) and motor symptoms (caudate nucleus).171 
In the same study, FDG-PET hypometabolism outper-
formed results of structural MRI in identifying func-
tional brain abnormalities in PD. 
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Actual challenges for molecular imaging of neurodegen-
eration
Pattern overlaps
Throughout recent years, pattern overlaps between ND’s 
phenotypes have gained increasing attention. A recent 
study on 895 autopsy cases from patients with neuro-
degenerative disease measured regional aggregation of 
β-amyloid, tau, α-synuclein, and TDP-43.172 Authors iden-
tified 6 disease clusters reflecting primary tauopathies, AD 
typical coexistence of amyloid-β and tau pathology, TDP-
43 proteinopathies, synucleinopathies, tau-α-synuclein 
copathology, and minimal cerebral pathology. 

The same proteins can represent risk factors for dif-
ferent NDs implying an overlap between them at a sub-
cellular level. On the other side, the cells and the fold of 
protein aggregates involved in the disease process can 
also overlap between multiple diseases. 

Molecular neuroimaging allows us to detect and 
monitor in vivo the ND hallmarks, their anatomical dis-
tribution and the interrelationships of the underlying 
molecular and cellular processes, disentangling pattern 
overlaps of neurodegeneration. 

Co-pathologies suggest that NDs might share 
common pathogenic pathways as shown by the ge-
nome-wide association studies (GWASs).173,174 Genetic 
overlap between neurodegenerative diseases is more fre-
quently studied in pairwise investigations, and more re-
cently across multiple neurodegenerative disorders.174-176  

The case of tau-directed imaging
The composition of tau aggregates and their geomet-
ric arrangements may vary in disease subtypes, while 
it is constant in patients with the same disease.177-180,10 
Tauopathy is classified by the type of tau isoforms pres-
ent in the neurofibrillary tangles, differing in the num-
ber of carboxy-terminal repeating domains (3R or 
4R).181 While AD is associated with both 3R and 4R 
forms, 4R tau is abundant in CBD and PSP, 3R in Pick’s 
disease and three subtypes (3R, 4R or 3R/4R) are pres-
ent in FTD.182,181,177 

In addition to tau isoforms, distinctive folds in the 
tau fibrils characterize AD (paired helical filaments 
» straight filaments) and non-AD tauopathies as PSP 
(straight filaments; rare twisted filament), CBD and 
Pick’s disease (straight filaments >> twisted filament).183

Therefore, awareness of these differences is relevant 
in molecular imaging with tau-directed radioligands.

Among the first-generation of tau PET radiotracers, 
the pyridoindole derivative[18F]-flortaucipir was the 
first radioligand approved for clinical use by the FDA 
on May 2020.184

However, off-target binding to white matter or oth-
er neural structures (i.e. in the striatum and choroid 
plexus) and low affinity for tau fibrils in non-AD tauop-
athies such as PSP and CBD,185 pushed the develop-

ment of second-generation tau PET tracers, including 
[18F]-RO-948, [18F]-MK-6240, [18F]-PI-2620, [18F]-
JNJ-311, [18F]PM-PBB3, and [18F]-GTP1.186

A post-mortem radioligand binding study on sec-
ond-generation tau PET tracers PI2620, MK6240 and 
RO948 in AD, CBD and PSP has shown different bind-
ing properties of the different tracers, suggesting the 
potential for development of pure selective 4R tau PET 
tracers.187 

A recent in-depth analysis of the binding mecha-
nism across 10 first- and second-generations PET trac-
ers using multiple approaches (i.e. molecular dynamics, 
docking, and metadynamics simulations) has demon-
strated that MK6240 binds better to tau aggregates in 
AD than in CBD and PSP, and that CBD2115, PI2620, 
and PMPBB3 represent 4R tau binders.188 

Fluid and imaging biomarkers for neurodegeneration
Currently, several fluid biomarkers including beta-am-
yloid, tau protein, neurofilament light chain, alpha-sy-
nuclein and glial fibrillary protein, can differentiate 
different neurodegenerative diseases. The best-validated 
fluid biomarkers derive from CSF, but blood-based tests 
may are improving in accuracy and predictive value es-
pecially for the ratio of amyloid-beta 42/40 (Aβ 42/40), 
pTau, and NfL.189-191 Serum biomarkers may enable 
much broader accessibility of testing, in light of lower 
costs and less invasive collection. However, as of yet no 
single biomarker allows for definitive diagnoses.192 Inte-
grating information from imaging and fluid biomark-
ers in a “composite tool” may increase sensitivity and 
specificity of diagnosis, especially in screening at-risk 
subjects.193 Considering that false positive results are ex-
pected using blood tests for AD in general population, a 
positive result is likely to require a definitive confirma-
tion through PET imaging able to detect region specific 
findings differentiating similar disease phenotypes in a 
non-invasive fashion. Moreover, in prodromal disease 
stages, molecular imaging may allow to assess not only 
the presence but also the location and the stage of the 
pathological and therapeutic target. In the case of tau 
imaging, the regional PET signal may allow to identify 
the different tauopathies. 

Finally, a unique advantage of molecular imaging is 
the quantitative capability which allows to estimate the 
specific disease hallmark that may be monitored during 
treatment intervention also in the early phases.

When conducting molecular imaging in atypical pheno-
types
Suggesting a standardized sequence for the utilization 
of PET and SPECT techniques in the context of atypical 
neurodegenerative disorders is a complex task. 

We propose that within the spectrum of disorders 
potentially linked to AD-related pathology (such as pri-
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mary progressive aphasias, behavioral disorders, and pos-
terior cortical atrophy, as discussed in our review), the 
assessment with PET-amyloid should be consistently per-
formed following the initial diagnostic workup, including 
clinical and neuropsychological evaluation, and structur-
al imaging. The PET analysis enables a precise diagnosis, 
ensuring access to clinical trials and specific pharmaco-
logical treatments. Moreover, recent evidence suggests 
that early acquisition-phase PET-amyloid acquisition re-
sembles the corresponding FDG-PET images, allowing 
the assessment of neuropathology and brain metabolism 
in a single PET scan.194 However, it is important to con-
sider the potential decrease in specificity of the PET-am-
yloid for individuals above 75 years and the presence of 
amyloid pathology as incidental or co-pathology.195 

In this regard, FDG-PET remains a key tool in differ-
entiating neurodegenerative dementias from psychiatric 
disorders and maintains a relevant role in the early stages 
of neurodegenerative disorders, especially in conditions 
where atrophy is not yet significant and cannot be detect-
ed by conventional neuroimaging methods.196,197 

The anticipated widespread integration of quanti-
tative analyses in routine clinical practice shortly (i.e., 
DaTscan SPECT and tau PET) will enable the assess-
ment of prognosis for various pathologies at the time of 
diagnosis. This consideration is crucial, given that the 
high costs associated with these methods do not allow 
for their repeated application throughout the progres-
sion of the pathology on a large scale.

Conclusion
This concise review summarizes the current use and 
potential role of Molecular Imaging techniques such 
as PET and SPECT in discriminating atypical pheno-
types of neurodegeneration and it may represent a quick 
guide to choosing the best imaging method in this het-
erogeneous clinical setting.

PET and SPECT radioligands targeting the key neu-
ropathological substrate of neurodegenerative disorders 
could anticipate the time for a correct diagnosis when 
atypical symptoms or signs may be confounding. This 
issue is crucial in working persons and younger sub-
jects with an early-onset of the disease, especially if they 
have the chance for the effect of new modifying-disease 
drugs. Delaying disease progression and symptoms by 
even a few years can highly impact the quality of life of 
patients, as well as their families and caregivers.

The application of new treatments requires patient 
screening in the prodromal phase to provide neuro-
pathological target detection, such as cerebral Aβ depo-
sition, tau inclusions, or α-synuclein accumulation, and 
to monitor treatment effects especially at the subclinical 
level. On the other hand, precise staging and diagno-
sis of neurodegenerative diseases may assist patient care 
and management in daily clinical practice. Moreover, 

the utilization of objective imaging techniques provid-
ing an “in vivo” quantitative assessment of specific dis-
ease targets, provides an accurate diagnosis in older 
individuals where the coexistence of cerebral age-re-
lated changes, cerebrovascular lesions, depression and 
neurodegenerative diseases may increase the complexity 
of the diagnostic process. In this heterogeneous context, 
a multilevel approach is needed and a strong cooper-
ation between primary care physicians and specialized 
centers for personalized patient care is needed.

One potential limitation of our review is the need 
for more detailed technical description of the  radi-
oligands used for PET and SPECT imaging, but it was 
outside of our goal as well as an in-depth analysis of 
quantitave methods to process acquired images.

An additional limitation could be the narrative ap-
proach of this review. However, our purpose was to 
deepen the understanding in the research area of mo-
lecular imaging of atypical presentation of neurodegen-
erative disorders focusing on existing debates, previous 
studies conducted on the topic, and latest applications 
available, summarizing their results so that they are eas-
ily translatable into clinical practice.

A big effort should be made in the future to provide 
an “imaging continuum” able to assess and integrate all 
the aspects of neurodegeneration, from pathology sub-
strates to functional connectivity, facing the challenge 
to stratify patients for an appropriate allocation of new 
arriving treatments.

Radioligand landscape will be probably enriched 
by tracers of neuroinflammation and synaptic density, 
while the diffusion of  hybrid PET/MRI scanners, as well 
as advanced imaging protocols could install a precision 
medicine approach for a comprehensive workup of neu-
rodegenerative disorders with atypical presentation.
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