

© Wydawnictwo UR 2019 ISSN 2544-1361 (online); ISSN 2544-2406 doi: 10.15584/ejcem.2019.2.12

REVIEW PAPER

Piotr Bar^{1(ABFG)}, Sabina Galiniak ^(D) ^{2(ABFG)}, Dorota Bartusik-Aebisher ^(D) ^{2(ABFG)}, Rafał Filip ^(D) ^{3(ABFG)}, David Aebisher ^(D) ^{4(ABFG)}

Glycosaminoglycan concentration in cancer tissue

¹ Clinical Department of Pathomorphology, Clinical Hospital No. 2, Rzeszów, Poland ² Department of Biochemistry and General Chemistry, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland

³ Department of Gastroenterology, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
⁴ Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland

ABSTRACT

Introduction. Glycosaminoglycans (GAGs) play a widespread role in tissue modelling. GAG polymers may affect several receptor pathways in parallel.

Aim. To present difference in concentration of GAG in healthy and cancer tissues.

Material and methods. The literature search was performed nd reviewed using selected keywords.

Results. We revieved the methods of detection various types of glycans measured by Magnetic Resonance Imaging.

Conclusion. MRI methodology provides an efficient tool forstudy of cellular composition. The use T₁ aof T₂ measurements to study cancer tissue is a promising assay.

Keywords. fixed charge density, glycosaminoglycan, magnetic resonance imaging

Introduction

Proteoglycans (PG) are one of the major components of the extracellular matrix (ECM). ECM conteinat at least one glycosaminoglycan (GAG) chain such as heparan sulfate, chondroitin sulfate, keratan sulfate, and heparin. PGs are formed of GAGs covalently attached to the core proteins. PG are cellular, subcellular, intracellular, cell surface, pericellular, and extracellular.¹⁻² PG are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes.³⁻⁹ GAG expression occurs in most hematological malignancies, notably acute myeloid leukemia, myeloproliferative neoplasms, and multiple myeloma. Here, we review recent research advances regarding cellular GAG and possible magnetic resonance applications to measure GAG concentrations.

Corresponding author: David Aebisher, email: daebisher@ur.edu.pl

Participation of co-authors: A – Author of the concept and objectives of paper; B – collection of data; C – implementation of research; D – elaborate, analysis and interpretation of data; E – statistical analysis; F – preparation of a manuscript; G – working out the literature; H – obtaining funds

Received: 29.10.2018 | Accepted: 29.11.2018 Publication date: June 2019

Bar P, Galiniak S, Bartusik-Aebisher D, Filip R, Aebisher D. *Glycosaminoglycan concentration in cancer tissue*. Eur J Clin Exp Med. 2019;17(2):175–178. doi: 10.15584/ejcem.2019.2.12

Magnetic Resonance Imaging and celluar GAG measurements

Relaxation times measuremens $(T_1 \text{ and } T_2)$ of cancer tissue protons can be determined by Magnetic Resonance Imaging (MRI). Because of the development of MRI methods many cellular properties of tumor tissue is studied with MRI. MRI relaxation times have been shown to be various for many types of tumors compared to normal tissues. MRI is an important non-surgical tool in medical and biomedical analysis. While standard MRI can provide basic information regarding tumor location, its size and spread, the quantified MRI can evaluate the effectiveness of therapy. It was already shown that treatment of cells results in MR contrast changes due to changes in relaxivity caused by cell shrinkage and cellular membrane blabbing. We contribute changes in T₁ and T₂ during the cell growth observed for both cell lines to the changes in tissue hydratation and protein content. In addition, our study showed that proton T₁ and T₂ relaxation times are not significantly different between both cell lines.

Glycosaminoglycan (GAG) 9-24

The GAG concentration was calculated based on Fixed Charge Density (FCD) value, which was measured by flushing the culture with Gd(DTPA)²⁻. The FCD can be expressed as:

$$FCD_{tissue} = -2 \left[Na^{+} \right]_{bath} \left\{ \sqrt{\left[\frac{Gd(DTPA)^{2-} \right]_{tissue}}{[Gd(DTPA)^{2-}]_{bath}}} - \sqrt{\left[\frac{Gd(DTPA)^{2-} \right]_{bath}}{[Gd(DTPA)^{2-}]_{tissue}}} \right\}$$

$$\{Eq. 1\}$$
Where:
$$\left[Gd(GDPA)^{2-} \right]_{tissue} = \frac{1}{R} \left(\frac{1}{(post Gd)T_{1}(tissue)} - \frac{1}{(pre Gd)T_{1}(tissue)}} \right)$$

$$\{Eq. 1a\}$$
and
$$\left[Gd(DTPA)^{2-} \right]_{bath} = \frac{1}{R} \left(\frac{1}{(post Gd)T_{1}(bath)} - \frac{1}{(pre Gd)T_{1}(bath)} \right)$$

$$\{Eq. 1b\}$$
Where:
Bath – medium around the breast cancer cells;
R – relaxivity (mmol/L/sec);
Tissue – breast cancer cells tissue;

[Na⁺]_{bath} - concentration of Na⁺ ions in bath, 154 (mmol/L);

 $(postGd)T_{1(tissue)} - T_1$ relaxation time of the breast cancer cells after administration Gd(DTPA)²⁻ solution in sec; $T_{1(tissue)} - T_1$ relaxation time of the breast cancer cells before administration Gd(DTPA)²⁻ solution in sec; $(postGd)T_{1(bath)} - T_1$ relaxation time of the bath after administration Gd(DTPA)²⁻ solution in sec; $T_{1(bath)} - T_1$ relaxation time of bath before administration Gd(DTPA)²⁻ solution in sec.

The calculated FCD is converted to GAG concentration according equation 2:

$$GAG = FCD\left(\frac{502.5}{-2}\right)_{\text{{Eq. 2}}}$$

Where: *GAG*- Glycosoaminoglycan concentration (mg/L);

FCD – Fixed Charge Density (mmol/L);

502.5 - Molecular weight of GAG in (mg/mmol).

Application of enables direct study of cells before and after treatment. The T_1 and T2 relaxation time of cells is sensitive to GAG concentration. Therefore, MRI measurements of cells with the use of anionic paramagnetic contrast agent Gd(DTPA)²⁻ reflect directly to the GAG concentration in tissue and is sensitive to physiologic and pathologic conditions resulting in an approximately linear relation between GAG content and T_1 relaxation time. Since GAGs have negatively charged side chains, the Gd(DTPA)²⁻ distributes in higher concentration into areas with lower GAG concentrations. Therefore, a low T_1 values after contrast agent administration indicates low GAG concentration.

In oncology non-invasive imaging of cells has gained interest for the assessment of tumor response to cancer therapy. Therefore, MRI has become an important diagnostic technique for characterization of cells, such as degeneration. Due to variability in response to therapy, there is a growing interest in monitoring efficacy progress during treatment. There is a rapid increase in the applications of MRI for cellular imaging. Table 1 presents selected types of cellular PG's.

Eponym	Secretory	Location
	granules	
Serglycin ²⁴	Transmembrane	Cell surface
Syndecan ^{25,26}	Transmembrane	Cell surface
NG2 ^{27,28}	Transmembrane	Cell surface
Betaglycan ^{29,30,31}	Transmembrane	Cell surface
Phosphacan ^{32,33}	Transmembrane	Cell surface
Glypican ^{34,35}	Glypican	Cell surface
Perlecan ³⁶	Basement	Pericellular
	membrane zone	
Agrin ³⁷	Basement	Pericellular
	membrane zone	
Aggrecan ³⁸	Hyalectan	Extracellular
	Lectican	
Versican 39	Hyalectan	Extracellular
	Lectican	
Neurocan ⁴⁰	Hyalectan	Extracellular
	Lectican	
Brevican ⁴¹	Hyalectan	Extracellular
	Lectican	

Conclusion

MRI methodology provides an efficient tool forstudy of cellular composition. The use T_1 aof T_2 measurements to study cancer tissue is a promising assay.

Acknowledgments

Dorota Bartusik-Aebisher acknowledges support from the National Center of Science NCN (New drug delivery systems-MRI study, Grant OPUS-13 number 2017/25/B/ST4/02481).

References

- Tanaka Y, Tateishi R, Koike K. Proteoglycans Are Attractive Biomarkers and Therapeutic Targets in Hepatocellular Carcinoma. *Int J Mol Sci.* 2018;19(10). pii: E3070.
- Xu H, Liao H, Che G, Zhou K, Yang M, Liu L. Clinical Value Evaluation of Perioperative Prophylactic Anticoagulation Therapy for Lung Cancer Patients. *Zhongguo Fei Ai Za Zhi*. 2018;21(10):767-772.
- Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. *Matrix Biol.* 2017; pii: S0945-053X(17)30313-X.
- Pang X, Li H, Guan F, Li X. Multiple Roles of Glycans in Hematological Malignancies. *Front Oncol.* 2018;8:364. doi: 10.3389/fonc.2018.00364.
- Hu YR, Liu YY, Liu LP, Zhang H. Effects of low molecular weight heparin in the treatment of venous thromboembolism in patients with gastrointestinal cancer. *J Biol Regul Homeost Agents*. 2018;32(3):67.
- Gilarska A, Lewandowska-Łańcucka J, Horak W, Nowakowska M. Collagen/chitosan/hyaluronic acid - based injectable hydrogels for tissue engineering applications design, physicochemical and biological characterization. *Colloids Surf B Biointerfaces*. 2018;170:152-162.
- Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. *Acta Pharm Sin B*. 2018;8(1):34-50.
- Khurshid C, Pye DA. Isolation and Composition Analysis of Bioactive Glycosaminoglycans from Whelk. *Mar Drugs*. 2018;16(5). pii: E171.
- Mou J, Wu Y, Bi M, Qi X, Yang J. Polyanionic holothurian glycosaminoglycans-doxorubicin nanocomplex as a delivery system for anticancer drugs. *Colloids Surf B Biointerfaces*. 2018;167:364-369.
- Nikitovic D, Berdiaki A, Spyridaki I, Krasanakis T, Tsatsakis A, Tzanakakis GN. Proteoglycans-Biomarkers and Targets in Cancer Therapy. *Front Endocrinol (Lausanne)*. 2018;9:69.
- Hoosen Y, Pradeep P, Kumar P, du Toit LC, Choonara YE, Pillay V. Nanotechnology and Glycosaminoglycans: Paving the Way Forward for Ovarian Cancer Intervention. *Int J Mol Sci.* 2018;19(3).
- Zheng S, Xia Y. The impact of the relaxivity definition on the quantitative measurement of glycosaminoglycans in cartilage by the MRI dGEMRIC method. *Magn Reson Med.* 2010;63(1):25-32.

- 13. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK. Proteoglycans in health and disease: Novel roles for
- targeting. *FEBS J.* 2010, 277, 3904–3923.
 14. Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. *Matrix Biol.* 2015;42, 11–55.

proteoglycans in malignancy and their pharmacological

- Pejler G, Abrink M, Wernersson S. Serglycin proteoglycan: Regulating the storage and activities of hematopoietic proteases. *Biofactors*. 2009;35:61–68.
- Korpetinou A, Papachristou DJ, Lampropoulou A, Bouris P, Labropoulou VT, Noulas A, Karamanos NK, Theocharis AD. Increased Expression of Serglycin in Specific Carcinomas and Aggressive Cancer Cell Lines. *BioMed Res Int*. 2015;690721.
- Guo JY, Hsu HS, Tyan SW, Li FY, Shew JY, Lee WH, Chen JY. Serglycin in tumor microenvironment promotes non--small cell lung cancer aggressiveness in a CD44-dependent manner. *Oncogene*. 2017;36:2457–2471.
- Trattnig S, Mamisch TC, Pinker K, Domayer S, Szomolanyi P, Marlovits S, Kutscha-Lissberg F, Welsch GH. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. *Eur Radiol.* 2008;18(6):1251-1259.
- Theocharis AD, Seidel C, Borset M, Dobra K, Baykov V, Labropoulou V, Kanakis I, Dalas E, Karamanos NK, Sundan A. Serglycin constitutively secreted by myeloma plasma cells is a potent inhibitor of bone mineralization in vitro. *J Biol Chem.* 2006;281: 35116–35128.
- He J, Zeng ZC, Xiang ZL, Yang P. Mass spectrometry-based serum peptide profiling in hepatocellular carcinoma with bone metastasis. *World J Gastroenterol.* 2014;20: 3025–3032.
- Zhang Z, Deng Y, Zheng G, Jia X, Xiong Y, Luo K, Qiu Q, Qiu N, Yin J, Lu M. SRGN-TGFβ2 regulatory loop confers invasion and metastasis in triple-negative breast cancer. *Oncogenesis*. 2017;6:e360.
- 22. Li HG, Xie DR, Shen XM, Li HH, Zeng H, Zeng YJ. Clinicopathological significance of expression of paxillin, syndecan-1 and EMMPRIN in hepatocellular carcinoma. *World J Gastroenterol.* 2005;11:1445–1451.
- Saunders S, Jalkanen M, O'Farrell S, Bernfield M. Molecular cloning of syndecan, an integral membrane proteoglycan. *J Cell Biol.* 1989; 108:1547–1556.
- 24. Tanaka Y, Tateishi R, Koike K. Proteoglycans Are Attractive Biomarkers and Therapeutic Targets in Hepatocellular Carcinoma. *Int J Mol Sci.* 2018;19(10). pii: E3070.
- 25. Kim JM, Lee K, Kim MY, Shin HI, Jeong D. Suppressive effect of syndecan ectodomains and N-desulfated heparins on osteoclastogenesis via direct binding to macrophagecolony stimulating factor. *Cell Death Dis.* 2018;9(11):1119.
- Russo TA, Stoll D, Nader HB, Dreyfuss JL. Mechanical stretch implications for vascular endothelial cells: Altered extracellular matrix synthesis and remodeling in pathological conditions. *Life Sci.* 2018;213:214-225.

- 27. Bruckner D, Kaser-Eichberger A, Bogner B, Runge C, Schrödl F, Strohmaier C, Silva ME, Zaunmair P, Couillard-Despres S, Aigner L, Rivera FJ, Reitsamer HA, Trost A. Retinal Pericytes: Characterization of Vascular Development-Dependent Induction Time Points in an Inducible NG2 Reporter Mouse Model. *Curr Eye Res.* 2018;43(10):1274-1285.
- Huang W, Bai X, Stopper L, Catalin B, Cartarozzi LP, Scheller A, Kirchhoff F. During Development NG2 Glial Cells of the Spinal Cord are Restricted to the Oligodendrocyte Lineage, but Generate Astrocytes upon Acute Injury. *Neuroscience*. 2018;385:154-165.
- 29. Rath P, Nardiello C, Surate Solaligue DE, Agius R, Mižíková I, Hühn S, Mayer K, Vadász I, Herold S, Runkel F, Seeger W, Morty RE. Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia. *Pediatr Res.* 2017;81(5):795-780.
- 30. Dexheimer V, Gabler J, Bomans K, Sims T, Omlor G, Richter W. Differential expression of TGF-β superfamily members and role of Smad1/5/9-signalling in chondral versus endochondral chondrocyte differentiation. *Sci Rep.* 2016;6:36655.
- Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, O'Connell K, Mythreye K. Altering the Proteoglycan State of Transforming Growth Factor β Type III Receptor (TβRIII)/Betaglycan Modulates Canonical Wnt/β-Catenin Signaling. J Biol Chem. 2016;291(49):25716-25728.
- Gao R, Wang M, Lin J, Hu L, Li Z, Chen C, Yuan L. Spatiotemporal expression patterns of chondroitin sulfate proteoglycan mRNAs in the developing rat brain. *Neuroreport*. 2018;29(7):517-523.
- 33. Fujikawa A, Chow JPH, Matsumoto M, Suzuki R, Kuboyama K, Yamamoto N, Noda M. Identification of novel

splicing variants of protein tyrosine phosphatase receptor type Z. *J Biochem*. 2017;162(5):381-390.

- Li N, Gao W, Zhang YF, Ho M. Glypicans as Cancer Therapeutic Targets. *Trends Cancer*. 2018;4(11):741-754.
- Majeed S, Mushtaq S, Azam M, Akhtar N, Hussain M, Loya A. Diagnostic accuracy of glypican-3 in differentiating hepatocellular carcinoma from metastatic liver tumours. J Pak Med Assoc. 2018;68(7):1029-1031.
- 36. Yamashita Y, Nakada S, Yoshihara T, Nara T, Furuya N, Miida T, Hattori N, Arikawa-Hirasawa E. Perlecan, a heparan sulfate proteoglycan, regulates systemic metabolism with dynamic changes in adipose tissue and skeletal muscle. *Sci Rep.* 2018;8(1):7766.
- Rivera C, Zandonadi FS, Sánchez-Romero C, Soares CD, Granato DC, González-Arriagada WA, Paes Leme AF. Agrin has a pathological role in the progression of oral cancer. *Br J Cancer*. 2018;118(12):1628-1638.
- 38. Struck AK, Dierks C, Braun M, Hellige M, Wagner A, Oelmaier B, Beineke A, Metzger J, Distl O. A recessive lethal chondrodysplasia in a miniature zebu family results from an insertion affecting the chondroitin sulfat domain of aggrecan. *BMC Genet.* 2018;19(1):9.
- Long X, Deng Z, Li G, Wang Z. Identification of critical genes to predict recurrence and death in colon cancer: integrating gene expression and bioinformatics analysis. *Cancer Cell Int.* 2018;18:139.
- 40. Mohan V, Wyatt EV, Gotthard I, Phend KD, Diestel S, Duncan BW, Weinberg RJ, Tripathy A, Maness PF. Neurocan Inhibits Semaphorin 3F Induced Dendritic Spine Remodeling Through NrCAM in Cortical Neurons. *Front Cell Neurosci.* 2018; 9,12:346.
- Coate TM, Conant K. Brevican "nets" voltage-gated calcium channels at the hair cell ribbon synapse. *BMC Biol.* 2018;16(1):105.