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ABSTRACT 
Introduction. Glycosaminoglycans (GAGs) play a widespread role in tissue modelling. GAG polymers may affect several recep-
tor pathways in parallel. 
Aim. To present difference in concentration of GAG in healthy and cancer tissues. 
Material and methods. The literature search was performed nd reviewed using selected keywords.
Results. We revieved the methods of detection various types of glycans measured by Magnetic Resonance Imaging.
Conclusion. MRI methodology provides an efficient tool forstudy of cellular composition. The use T1 aof T2 measurements to 
study cancer tissue is a promising assay. 
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Introduction
Proteoglycans (PG) are one of the major components 
of the extracellular matrix (ECM). ECM conteinat at 
least one glycosaminoglycan (GAG) chain such as hep-
aran sulfate, chondroitin sulfate, keratan sulfate, and 
heparin. PGs are formed of GAGs covalently attached 
to the core proteins. PG are cellular, subcellular, intra-
cellular, cell surface, pericellular, and extracellular.1-2 
PG are major components of extracellular matrix play-
ing key roles in its structural organization and cell sig-

naling contributing to the control of numerous normal 
and pathological processes.3-9 GAG expression occurs 
in most hematological malignancies, notably acute 
myeloid leukemia, myeloproliferative neoplasms, and 
multiple myeloma. Here, we review recent research ad-
vances regarding cellular GAG and possible magnetic 
resonance applications to measure GAG concentra-
tions. 
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Magnetic Resonance Imaging and celluar GAG 
measurements
Relaxation times measuremens (T1 and T2) of cancer 
tissue protons can be determined by Magnetic Reso-
nance Imaging (MRI). Because of the development of 
MRI methods many cellular properties of tumor tissue 
is studied with MRI. MRI relaxation times have been 
shown to be various for many types of tumors compared 
to normal tissues. MRI is an important non-surgical 
tool in medical and biomedical analysis. While standard 
MRI can provide basic information regarding tumor lo-
cation, its size and spread, the quantified MRI can eval-
uate the effectiveness of therapy. It was already shown 
that treatment of cells results in MR contrast changes 
due to changes in relaxivity caused by cell shrinkage and 
cellular membrane blabbing. We contribute changes in 
T1 and T2 during the cell growth observed for both cell 
lines to the changes in tissue hydratation and protein 
content. In addition, our study showed that proton T1 
and T2 relaxation times are not significantly different be-
tween both cell lines. 

Glycosaminoglycan (GAG) 9-24

The GAG concentration was calculated based on Fixed 
Charge Density (FCD) value, which was measured by 
flushing the culture with Gd(DTPA)2-. The FCD can be 
expressed as: 
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Where: 
Bath – medium around the breast cancer cells; 
R – relaxivity (mmol/L/sec); 
Tissue – breast cancer cells tissue; 
[Na+]bath – concentration of Na+ ions in bath, 154 
(mmol/L); 
(postGd)T1(tissue) – T1 relaxation time of the breast cancer 
cells after administration Gd(DTPA)2- solution in sec; 
T1(tissue) – T1 relaxation time of the breast cancer cells be-
fore administration Gd(DTPA)2- solution in sec; 
(postGd)T1(bath) – T1 relaxation time of the bath after ad-
ministration Gd(DTPA)2- solution in sec; 

T1(bath) – T1 relaxation time of bath before administration 
Gd(DTPA)2- solution in sec. 

The calculated FCD is converted to GAG concentra-
tion according equation 2:
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Where: GAG- Glycosoaminoglycan concentration 
(mg/L); 
FCD – Fixed Charge Density (mmol/L);
502.5 – Molecular weight of GAG in (mg/mmol). 

Application of enables direct study of cells before 
and after treatment. The T1 and T2 relaxation time of 
cells is sensitive to GAG concentration. Therefore, MRI 
measurements of cells with the use of anionic paramag-
netic contrast agent Gd(DTPA)2- reflect directly to the 
GAG concentration in tissue and is sensitive to phys-
iologic and pathologic conditions resulting in an ap-
proximately linear relation between GAG content and 
T1 relaxation time. Since GAGs have negatively charged 
side chains, the Gd(DTPA)2– distributes in higher con-
centration into areas with lower GAG concentrations. 
Therefore, a low T1 values after contrast agent adminis-
tration indicates low GAG concentration. 

In oncology non-invasive imaging of cells has 
gained interest for the assessment of tumor response to 
cancer therapy. Therefore, MRI has become an import-
ant diagnostic technique for characterization of cells, 
such as degeneration. Due to variability in response to 
therapy, there is a growing interest in monitoring effica-
cy progress during treatment. There is a rapid increase 
in the applications of MRI for cellular imaging. Table 1 
presents selected types of cellular PG’s.

Eponym Secretory 
granules

Location

Serglycin24 Transmembrane Cell surface
Syndecan25,26 Transmembrane Cell surface

NG227,28 Transmembrane Cell surface
Betaglycan29,30,31 Transmembrane Cell surface
Phosphacan32,33 Transmembrane Cell surface

Glypican34,35 Glypican Cell surface
Perlecan36 Basement 

membrane zone
Pericellular

Agrin37 Basement 
membrane zone

Pericellular

Aggrecan38 Hyalectan 
Lectican

Extracellular

Versican 39 Hyalectan 
Lectican

Extracellular

Neurocan40 Hyalectan 
Lectican

Extracellular

Brevican41 Hyalectan 
Lectican

Extracellular
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Conclusion
MRI methodology provides an efficient tool forstudy of 
cellular composition.The use T1 aof T2 measurements to 
study cancer tissue is a promising assay. 
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