Drug-induced thrombocytopenia – etiology and alternative therapeutic approaches

Vani Rajashekaraiah, Anusha Berikai Ananthakrishna

Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), Bengaluru, Karnataka, India

ABSTRACT

Introduction and aim. The cumulative incidence of drug-induced thrombocytopenia (DIT) is 10 cases per one million people per year with a prevalence of approximately 25% in critically ill patients. This review provides a comprehensive view of drug-induced thrombocytopenia, diagnosis, underlying mechanisms, common strategies in therapeutics, and potential alternatives.

Material and methods. Databases such as “Google Scholar”, “PubMed”, “Medline” and “MDPI” was used for literature review with the keywords, “platelets”, “platelet disorders”, “thrombocytopenia”, “drug-induced”, “oxidative stress”, “plant extracts”, “phytochemicals”, “antioxidants”, for the articles published between 2013-2023 and written in the English language.

Analysis of the literature. Several antimicrobials, anti-cancer drugs, and antivirals are often reported to cause adverse effects during treatment, such as thrombocytopenia. A thorough understanding of the underlying pathophysiology is important for appropriate treatment. Even though an improvement in platelet count is observed after the discontinuation of the causative drug, there is a dire need for treatment in some cases due to associated complications. There are various pitfalls with conventional treatments which include clinical complications and lack of effectiveness.

Conclusion. Interventions in therapeutics through antioxidants can aid in faster recovery. Various plant extracts and phytochemicals have been employed as therapeutics in platelet disorders due to their exceptional antioxidant activity. It is imperative to explore the bioactive components of natural products and their influence on platelet efficacy. Also, it highlights how antioxidants can be used as a safe, yet effective option as therapeutics for treating a complicated disorder such as DIT or be used as supplements to prevent adverse effects of existing treatments involving antibiotics and chemotherapeutics.

Keywords. alternative therapeutics, drug-induced thrombocytopenia, phytochemicals, platelets

Introduction

Platelets or thrombocytes are blood cells that are continuously produced from megakaryocytes in a process called Thrombopoiesis, mainly in the bone marrow. These anucleate cells range from ~150,000-450,000/µL in healthy individuals. They are found circulating in the blood for 8-10 days and are eliminated in the spleen and liver. The main function of the platelet is to react to vascular damage and form a blood clot at the site to stop bleeding. Nonetheless, platelets are also involved in several other functions such as affecting tumor progression by stimulating angiogenesis, separating the lymphatic circulation during embryogenesis, and helping to close ductus arteriosus at the time of birth. They are a significant part of primary immunity and contribute inflammatory mediators.

Platelet disorders are primarily due to following reasons: (i) an increase in platelet number, (ii) a decrease in platelet numbers, or (iii) platelet dysfunction. These can lead to either defective hemostatic plug formation leading to bleeding or spontaneous clot formation leading to thrombosis.
Platelet disorders are classified into:

i. Platelet function disorders: Inherited or acquired, due to loss or gain of platelet function, change in size and morphology of the platelets, and associated with clinically important bleeding defects.7

ii. High platelet count conditions or Thrombocytosis: Abnormal accumulation of platelets in the blood is further classified into primary or essential and secondary or reactive thrombocytosis.8,9

iii. Low platelet count conditions or Thrombocytopenia: Atypically low platelet levels (under 20,000 per mm3) due to an underlying cause.10

Aim

This review provides a comprehensive view of drug-induced thrombocytopenia, its diagnosis, underlying mechanisms, common strategies in therapeutics, and potential alternatives such as phytochemicals.

Material and methods

Databases such as “Google Scholar”, “PubMed”, “Medline” and “MDPI” was used for literature review with the keywords, “platelets”, “platelet disorders”, “thrombocytopenia”, “drug-induced”, “oxidative stress” “plant extracts”, “phytochemicals”, “antioxidants”, for the articles published between 2013-2023 and written in English language.

Analysis of the literature

Thrombocytopenia

Thrombocytopenia is characterized by a massive reduction in platelets in the peripheral blood, caused by a myriad of both congenital and acquired causes. Acute and severe decrease in platelet count exposes the individuals to an increased risk of developing spontaneous hemorrhage or thrombosis. Hemostasis entirely depends upon the functioning and the number of platelets in circulating blood and any deviation in the number can cause many complications.11

The major causes of thrombocytopenia can be summarized as follows:12,13

a. Decrease in differentiation of hematopoietic stem cells in bone marrow

b. Impairment of megakaryocyte maturation
c. Disruption of endothelial adhesion of megakaryocytes
d. Increase in peripheral platelet destruction due to immune and non-immune mediated pathways
e. Increase in splenic sequestration
f. Accelerated clearance from the circulation
g. Oxidative Stress

Drug-induced thrombocytopenia (DIT)
The main threat in any treatment procedure is the side effects caused by therapeutic drugs. Drugs administered for the treatment of a clinical symptom are capable of causing a different disorder altogether, based on their mode of action at the molecular level. DIT is one such disorder with a cumulative incidence of about 10 cases per million population per year and a prevalence as high as 25% in critically ill patients.14 DIT is often underdiagnosed and underreported and puts the patients at an increased risk of hemorrhage.

Studies have been conducted during the past two decades based on the types of drugs that specifically induce thrombocytopenia. Around 300 drugs have been clinically implicated in causing DIT as an adverse effect during the treatment procedure. Commonly reported drugs can be categorized into antibiotics, chemotherapeutic drugs, steroids and cardiovascular drugs. Chemotherapy regimens involving dexamethasone + cytarabine + cisplatin, isophosphamide + carboplatin + etoposide, gemcitabine + dexamethasone + cisplatin and gemcitabine + and oxaliplatin are most commonly reported to cause DIT in cancer patients.15 Some of the glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors have also been reported in DIT cases.14,16 Drug-related disorders are common in small molecules as well as biotherapeutics. Although they were believed to be safe due to their specific action, many biotherapeutic drugs have been reported to lead to adverse reactions leading to loss in blood cell count and functions.16 Some of the clinically important cases of DIT are listed in Table 1.

A detailed history of the patient and timely diagnosis is necessary to understand the underlying etiology. However, DIT often manifests in two ways:

a. One to two weeks after beginning a new drug or suddenly, after a single dose when the drug was previously taken intermittently.22

b. Immediately after the first administration of antithrombotic agents that block fibrinogen binding to platelet GP IIb-IIIa.14,37

DIT varies extensively from case to case and is often misdiagnosed as immune thrombocytopenic purpura and patients receive inappropriate treatment, leading to several complications. There have been cases where patients may not consider that self-regulated medications, beverages, foods, or herbal remedies are relevant to their bleeding symptoms and may not report them.38

Thorough understanding of the underlying pathophysiology plays a crucial role in devising a treatment of DIT. Identification of the trigger for the sudden fall in platelet count is the first and foremost step in the diagnosis of DIT. Secondly, excluding pseudothrombocytopenia is critical which occurs due to in vitro factors such as anticoagulants used during blood collection. There is no gold standard for the diagnosis of DIT, however, following a certain protocol in diagnosis and treatment as outlined in Fig. 1 can be favourable.39-41
Mechanisms
Majorly, the mechanisms can be classified into (i) platelet destruction and (ii) platelet production.

i. Platelet destruction: Platelet clearance due to increase in platelet desialylation by NanA neuraminidase and the Ashwell-Morell receptor (AMR)-dependent pathway can be the major causes of DIT during infection.\(^4\)\(^2\) Cross-Reaction of the drugs with endogenous thrombopoietin can lead to the neutralization of platelets in the bloodstream.\(^4\)\(^3\) Off-target platelet binding and activation due to the overloading of the therapeutic drug in blood can result in platelet activation and eventually destruction.\(^4\)\(^4\) The immune system can also play a major role in platelet destruction by inducing antiplatelet antibodies against the murine sequences of the chimeric Fab molecule.\(^5\)

ii. Platelet production: Low platelet levels may be due to the inhibition of thrombopoietin signaling in early megakaryokinisis leading to decreased platelet production.\(^4\)\(^5\) Myelosuppression/toxicity by targeting the epidermal growth factor receptor pathway, vascular endothelial growth factor (VEGF) pathway, and BCR-ABL pathway can contribute to low platelet count as there is an abnormality at Table 1.

Table 1. Cases of drug-induced thrombocytopenia and treatments

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Drugs</th>
<th>Medical condition</th>
<th>Time of diagnosis</th>
<th>Plausible mechanisms</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
<td>Acyclovir(^17)</td>
<td>Systemic lupus erythematosus (SLE)</td>
<td>Day 5</td>
<td>Drug-dependent immune mechanism</td>
<td>Discontinued Acyclovir; started IVIG at 0.4 g per kg/day for 4 days</td>
</tr>
<tr>
<td></td>
<td>Benznidazole(^18)</td>
<td>Chagas disease</td>
<td>Day 15</td>
<td>Toxicity due to reactive metabolites (free radicals) formed during the bioactivation</td>
<td>Discontinued Benznidazole; Prednisone at 1.5 mg/kg for 4 days with subsequent tapering of dose</td>
</tr>
<tr>
<td></td>
<td>Azithromycin(^19)</td>
<td>Nonpruritic maculopapular rash</td>
<td>Day 5</td>
<td>Drug-dependent and drug-independent antibodies</td>
<td>Discontinued Azithromycin; administered dexamethasone 40 mg IV + intravenous immunoglobulin (IVIG) for 10 days</td>
</tr>
<tr>
<td></td>
<td>Piperacillin-Tazobactam(^20)</td>
<td>Sepsis</td>
<td>Day 1</td>
<td>Platelet destruction due to hapten-dependent antibodies</td>
<td>Replaced the drugs with imipenem on day 9</td>
</tr>
<tr>
<td></td>
<td>Vancomycin; Giproflaxacin(^21)</td>
<td>Left total knee arthroplasty</td>
<td>Day 18</td>
<td>Drug-dependent platelet antibodies</td>
<td>Replaced vancomycin and rifampin with IV daptomycin</td>
</tr>
<tr>
<td></td>
<td>Indinavir(^22)</td>
<td>HIV infection</td>
<td>Month 15</td>
<td>Platelet destruction due to antibody-mediated lysis and decreased production in the bone marrow due to underlying infection</td>
<td>Switched to Stavudine + Didanosine + efavirenz.</td>
</tr>
<tr>
<td></td>
<td>Nitrofurantoin(^23)</td>
<td>Urinary tract infection</td>
<td>Week 3</td>
<td>Immune-mediated adverse reactions</td>
<td>Proliferative factors + intravenous immunoglobulin (IVIG) + 4 units of platelet transfusion</td>
</tr>
<tr>
<td>Antineoplastic drugs</td>
<td>Cisplatin(^24)</td>
<td>Bladder tumor</td>
<td>Day 28</td>
<td>Myelosuppression</td>
<td>Prophylactic platelet transfusion</td>
</tr>
<tr>
<td></td>
<td>Etoposide(^25)</td>
<td>Metastatic rectal neuroendocrine carcinoma</td>
<td>Month 4</td>
<td>Immune-mediated adverse reactions</td>
<td>Platelet transfusion + Rituximab</td>
</tr>
<tr>
<td></td>
<td>Carboplatin(^26)</td>
<td>Glioblastoma multiforme</td>
<td>Week 5</td>
<td>Platelet destruction</td>
<td>Drug discontinuation + Platelet transfusions + Pappayia leaf extract liquid supplementation</td>
</tr>
<tr>
<td></td>
<td>Oxaliplatin(^27)</td>
<td>Small Bowel Adenocarcinoma</td>
<td>24 h</td>
<td>Bone marrow suppression</td>
<td>Drug discontinuation + Platelet transfusions</td>
</tr>
<tr>
<td>Biotherapeutics</td>
<td>Trastuzumab(^28)</td>
<td>Breast Cancer</td>
<td>Day 2</td>
<td>Platelet-reactive IgG and IgM targeting glycoprotein Iib/IIia and Iib/IVa complexes</td>
<td>Drug discontinuation + Oral prednisolone</td>
</tr>
<tr>
<td></td>
<td>Durvalumab(^29)</td>
<td>Non-small-cell lung cancer</td>
<td>Week 5</td>
<td>Anti-human platelet antigen auto-antibodies</td>
<td>Drug discontinuation</td>
</tr>
<tr>
<td></td>
<td>Atezolizumab(^30)</td>
<td>Small cell lung cancer</td>
<td>Month 7</td>
<td>Immune checkpoint inhibitor-induced</td>
<td>Methylprednisolone + platelet transfusion + thrombopoietin</td>
</tr>
<tr>
<td>Cardiovascular drugs</td>
<td>Abciximab(^31)</td>
<td>Percutaneous coronary intervention of left anterior descending artery</td>
<td>Day 8</td>
<td>Formation of antibodies against its chimeric structural peptide sequence</td>
<td>Oral prednisone + intravenous immunoglobulin (IVIG) for 7 days</td>
</tr>
<tr>
<td></td>
<td>Atorvastatin(^32)</td>
<td>Hyperlipidemia</td>
<td>Week 10</td>
<td>Platelet apoptosis in vivo</td>
<td>Discontinued atorvastatin + IVIG for 2 days + Prednisone 80 mg for 5 days + Rituximab</td>
</tr>
<tr>
<td></td>
<td>Ticagrelor(^33)</td>
<td>Percutaneous transluminal coronary angioplasty</td>
<td><24 h</td>
<td>Drug-dependent antibody-mediated platelet destruction</td>
<td>Drug discontinuation</td>
</tr>
<tr>
<td></td>
<td>Eptifibatide(^34)</td>
<td>Acute coronary syndrome</td>
<td>Day 2</td>
<td>Platelet destruction</td>
<td>Drug discontinuation</td>
</tr>
<tr>
<td></td>
<td>Carvedilol(^35)</td>
<td>Hemodialysis</td>
<td>Week 2</td>
<td>Drug-dependent antibody-mediated destruction of platelets</td>
<td>Drug discontinuation</td>
</tr>
<tr>
<td></td>
<td>Heparin(^36)</td>
<td>COVID-19</td>
<td>Day 11</td>
<td>Anti-PF4/ heparin antibody</td>
<td>Drug discontinuation</td>
</tr>
<tr>
<td></td>
<td>Quinine(^37)</td>
<td>Restless leg syndrome</td>
<td>48 h</td>
<td>Immune reactivation of drug specific antibodies</td>
<td>Platelet transfusion</td>
</tr>
</tbody>
</table>
the production level or induction of platelet apoptosis. Bone marrow toxicity caused by some drugs can inhibit megakaryocyte differentiation and maturation which can impact platelet numbers. Platelet consumption can also occur due to endothelial dysfunction from lack of VEGF or suppression of hematopoiesis. Table 2 outlines various mechanisms that reduce platelet numbers based on different classes of drugs and their target pathways.

Treatments

Treatment strategies for DIT focus primarily on the recovery of lost platelets. In most cases, physicians identify the drug responsible for the condition and take the first step by switching the suspected drug to an alternate drug. Cessation of administering a suspected drug generally reverses the condition of DIT in most cases. However, treatment is required in cases where the therapeutic drug is crucial for the patient or when patients experience life-threatening bleeding. Conventional treatment is advised based on the following strategies outlined below.

Common approaches

The outline of commonly used strategies in the treatment of DIT is summarized in Fig. 2 and can be explained as follows:

Fig. 2. Therapeutic strategies for Drug-induced thrombocytopenia

i. Discontinuation of the suspected drug: The first approach of the treatment is by discontinuing the suspected causative agent. This can be done by establishing which of the patient’s medications is reported for causing DIT by referring to the available databases.

ii. Corticosteroids: Generally, corticosteroids like prednolone, dexamethasone, and methylprednisolone are used in the treatment of DIT. The mechanism of corticosteroids is primarily based on impairing the clearance of opsonized platelets in the bone marrow and peripheral organs. It also acts by reducing the autoantibody levels and preventing the immune-related platelet destruction, thereby increasing the platelet levels more rapidly than any other treatment.

iii. Intravenous (IV) immunoglobulin G (IgG) therapy: Another common approach is the use of IV IgG therapy to impair the clearance of opsonized platelets. IV IgG causes increased clearance of the antiplatelet antibodies by saturating the neonatal Fc salvage receptor for IgG. Even though it is more expensive than other treatments, it is beneficial due to rapid response ranging between 24-48 hours.

iv. Platelet transfusion: Transfusion can be attempted when the suspected drug is necessary for an extended duration. Transfusions can become ineffective in some cases, due to other related complications.
making an individualized approach a necessity. Procurement of matched platelets by platelet apheresis are extremely difficult in emergency situations. Nonetheless, utilizing platelets stored in blood banks having limited shelf-life of up to 5 days can be ineffective due to the effect of storage lesions.51,62

v. Surgical: Splenectomy is a surgical procedure that partially or completely removes the spleen to increase the platelet count. This procedure aids in the release of splenic sequestered platelets into circulation, thereby instantly elevating the platelets. However, the major drawback of the procedure is that it may adversely affect portal hypertension. Therefore, portal decompression is more preferred to improve thrombocytopenia. Nonetheless, surgical procedures are the least recommended for DIT as it is mostly unnecessary and may cause further damage during the procedure.65

vi. Other drugs: Thrombopoietin receptor (TPO-R) agonists are potential therapeutic drugs for DIT which stimulates the platelet production in the bone marrow. These act as replacement for thrombopoietin and elevate the platelet count. Spleen tyrosine kinase (SYK)-inhibitors are yet another approved class of drugs for DIT which can reduce antibody-mediated platelet destruction by immunosuppression mechanism.64,65 Some of the examples of drugs include romiplostim, eltrombopag, imiglucerase, avaratrombopag and fostamatinib.58

Alternative approaches

Oxidative stress in cells and tissues due to reactive oxygen species (ROS) is attributed as a primary causative agent in several disease conditions. Free radicals are highly unstable molecules and are highly reactive, thereby attacking the molecules in a biological system, causing metabolic malfunction, and cellular protein destruction, and can cause cell death.66,67

Antioxidants scavenge ROS and repair oxidative damage. Primary antioxidants scavenge ROS by hydrogen atom transfer (HAT) mechanism, by donating an H-atom, or act by single electron transfer (SET) mechanism. The secondary antioxidants neutralize the ROS using prooxidant catalysts by quenching free radicals and are thus exhausted.68 Plant extracts and phytochemicals have excellent antioxidant capacity and are explored to reduce the possibility of the occurrence of disorders. There are reports that antioxidants alleviate the condition when used as an alternative therapeutic strategy or taken as a supplement or in numerous disease conditions.69,70

Studies have proven that various plant extracts can be used as therapeutic agents in the treatment of thrombocytopenic conditions. These plant extracts have been routinely tested in animal models for their effectiveness in stimulating the production of platelets in thrombocytopenic condition. This ability of plant extracts is attributed to their antioxidant capacity. There are many studies dedicated to the identification of the bioactive compound in such extracts. Most bioactive components are phenolic acids, polyphenols, flavonoids or alkaloids in nature. The major challenge lies in identifying the specific bioactive compound in these extracts. Also, their influence on platelet functions is extremely under-reported. Nevertheless, specific antioxidants have been proven to be effective in improving platelet functions such as aggregation, granular secretion, activation and apoptosis and increasing the ability of endogenous antioxidant defense.71,72 Our preliminary studies have indicated that antioxidants such as L-carnitine and vanillic acid are beneficial for platelet survival.73,74 Table 3 and Table 4 provide details of plant extracts and antioxidants, respectively used under different thrombocytopenic conditions to improve platelet count. These studies are critical to categorize the antioxidants into either platelet agonists or anti-platelet agents as they are applied under rather entirely contrasting pathophysiological circumstances.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Condition</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carica papaya75</td>
<td>Cyclophosphamide induced-thrombocytopenia</td>
<td>Increase in platelet count</td>
</tr>
<tr>
<td>Medicago sativa76</td>
<td>Ethanol-induced thrombocytopenia</td>
<td>Increase in platelet count and decrease in bleeding and clotting time</td>
</tr>
<tr>
<td>Amananthus spinosus77</td>
<td>KBrO\textsubscript{3} induced thrombocytopenia</td>
<td>Increase in platelet count from 14.72 to 33.07 and from 11.08 to 32.90 (normal vs. thrombocytopenic) with apple fruit extract-enriched diet (AFED) and Apple seed extract-enriched diet (ASED), respectively</td>
</tr>
<tr>
<td>Malus domestica78</td>
<td>Quinine-induced thrombocytopenia</td>
<td>Increase in platelet count by 1.59-fold</td>
</tr>
<tr>
<td>Nigella sativa79</td>
<td>Zidovudine-induced thrombocytopenia</td>
<td>Increase in platelet counts</td>
</tr>
<tr>
<td>Jia-Xue-Teng (IXT, Spatholobus suberectus)80</td>
<td>Radiation-induced hematopoietic alteration</td>
<td>Attenuates platelet decline on day 21</td>
</tr>
<tr>
<td>Syzygium cumini81</td>
<td>Hydroxyurea-induced thrombocytopenia</td>
<td>Increase in platelet counts</td>
</tr>
<tr>
<td>Achyranthes aspera82</td>
<td>Healthy</td>
<td>Increase in platelet count</td>
</tr>
<tr>
<td>Annona muricata; Fagara zanthoxyloide83</td>
<td>Zidovudine-induced thrombocytopenia</td>
<td>Increase in platelet count by 49.56% (AM) and 51.32% (FZ), pronounced decrease in bleeding time</td>
</tr>
<tr>
<td>Bauhinia monandra84</td>
<td>Heparin-induced thrombocytopenia</td>
<td>Increased platelet counts and decreased bleeding and clotting time</td>
</tr>
<tr>
<td>Pudicia gajavera85</td>
<td>Boufluran induced-thrombocytopenia</td>
<td>Increase in platelet count and reversal of toxic effects</td>
</tr>
<tr>
<td>Equisetum hyemale and Euphorhia hirta86</td>
<td>Aspirin-induced thrombocytopenia</td>
<td>Both plant extracts possess platelet-increasing property in combination or alone</td>
</tr>
</tbody>
</table>

However, there are a few studies on using antioxidants and herbal products as supplements in human subjects with clinically significant thrombocytopenic conditions. These natural products have proven to improve patient's hematologic parameters and bleeding.
score under different pathological conditions. Effect of some antioxidants on platelet functions can be dose-dependent. They act as platelet agonists at higher concentration and can become anti-platelet at lower concentrations. Hence, it is essential to evaluate such antioxidants and optimize the dose for use as supplements in alternate therapeutics.

Table 4. Antioxidants as potential therapeutics for thrombocytopenia

<table>
<thead>
<tr>
<th>Antioxidant</th>
<th>Condition</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melatonin</td>
<td>Luzinol-A-induced thrombocytopenia</td>
<td>Increased platelet count and plasma levels of platelet function markers, β-thromboglobulin and PF4</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>Radiation-induced thrombocytopenia</td>
<td>Restored platelet count to normal levels, restored mitochondrial membrane potential and lowers superoxide production</td>
</tr>
<tr>
<td>γ-Tocotrienol</td>
<td>Basiline-induced thrombocytopenia</td>
<td>Decreased severity of thrombocytopenia</td>
</tr>
<tr>
<td>Carpine</td>
<td>Bussian-induced thrombocytopenia</td>
<td>Platelet stimulating activity</td>
</tr>
<tr>
<td>Vanillyl acid</td>
<td>Hydroxyurea-induced thrombocytopenia</td>
<td>Increased the number of platelets, inhibited the mitochondrial pathway-mediated platelet apoptosis and PK/PI3K/AKT pathway</td>
</tr>
<tr>
<td>Quercetin-3-O-β-D-glucuronide</td>
<td>Cyclosporine A-induced bone marrow failure</td>
<td>Improved platelet count</td>
</tr>
</tbody>
</table>

Conclusion

Alternate therapies using phytochemicals can aid in faster recovery and reduce mortality due to their remarkable antioxidant properties. Plant extracts have shown promising results in increasing the number of platelets in patients with thrombocytopenia. Although these natural remedies are not a substitute for conventional therapies, they can be used a supplementary therapy to improve the effectiveness of treatments. Based on the studies conducted to this point, they can also be used as supplements to prevent adverse effects of existing treatments involving antibiotics and chemotherapeutics. Antioxidant therapies are currently followed for various clinical conditions and are a promising arena for further exploration. However, these therapies are still in its infancy, and have gained attention in the recent past due to the awareness and benefits of traditional approaches. Several scientific reports encourage using antioxidants as alternate therapeutic substances. Furthermore, antioxidants are investigated only in terms of enhancement of platelet count for DIT, but it is imperative to study their effect on platelet functions. Nonetheless, these antioxidants should be extensively studied for their mechanistic properties and physiological interactions to be regarded as one of the standard therapeutic strategies.

Acknowledgments

The authors acknowledge Dr. Leela Iyengar, Dr. Manasa Mithun, M Pallavi, Magdaline Christina R, and JAIN (Deemed-to-be University) for their support.

Declarations

Funding

No financial assistance was obtained to conduct this study.

Author contribution

Conflicts of interests

The authors declare no competing interests.

Data availability

All data generated or analyzed during this study are included in this published article.

References

Drug-induced thrombocytopenia – etiology and alternative therapeutic approaches

