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ABSTRACT
Introduction and aim. Over the past decades, the hypotheses that ascorbic acid (AA) can play a role as an anti-neoplastic ther-
apy have generated many conflicting reports. Despite the controversies, mounting evidence has shown that AA has the po-
tential to play a role as an anti-neoplastic agent. Recent studies have unraveled its pharmacokinetics and various mechanism 
of action on cancer cells. This has spawned different preclinical studies with reports of good activities against various cancers. 
Material and methods. A review of the literature regarding ascorbic acid in the management of cancer was performed using 
the PubMed database. The research was limited to abstracts and available full-text articles.
Analysis of the literature. Clinical trials have also demonstrated its safety and tolerability across different dosages. AA has been 
noted as a multitargeting agent that acts as a pro-oxidative cytotoxic agent, anti-cancer epigenetic regulator and immune 
modulator. AA has also been shown act synergistically with standard chemotherapy regimens in different cancers. Despite its 
potentials, phase III clinical trials are seriously lacking. The recent phase III VITALITY study shows that AA may play a role as an 
adjunct targeted therapy for ras-mutated cancers. Therefore, there is need to for more standardized clinical trials to help iden-
tify cancer subtypes and AA combination regimens that can show the most benefits. In this review, the pleiotropic mechanism 
of action of AA was explored as well as various preclinical and clinical studies in cancer therapy. In addition, recommendations 
were also made for effective strategies towards an AA and standard cancer regimens in treatment as well as future directions. 
Ascorbic acid has been shown to induce cell death in various cancer types through different mechanisms of action. Several 
clinical trials and case reports have shown its efficacy in combination chemotherapy, and the pharmacological route of action 
can be either intravenous or oral. However, it can impair the actions of some drugs when given in combination. Also, dosage 
should be determined for maximal pharmacologic action.
Conclusion. Ascorbic acid has the potential to provide safe and cost-effective antineoplastic treatment option especially in 
combination therapy. Its potential needs to be further investigated through clinical trials. 
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Introduction
Ascorbic acid (vitamin C, AA) is a six- carbon lactone 
that is synthesized from glucose and primarily acts as an 
electron donor at the physiological state. It is a known 
pleiotropic molecule that serves various functions in the 
human body ranging from collagen hydroxylation, me-
tabolism of folic acid, tyrosine and tryptophan, synthe-

sis of carnitine and catecholamines and neutralizing free 
radicals as well as protection of DNA damage (Fig. 1).1

Apart from its physiological roles, AA has been 
muted as a potential anticancer agent. Several experi-
mental studies have shown that AA at pharmacologi-
cal doses has some clinical effects on various types of 
cancer.2-4 Since the 1950s, AA has been proposed as a 
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cancer agent, however, in 1974 works carried out by the 
Scottish surgeon Ewan Cameron and his colleague Al-
lan Campbell using high dose AA both intravenously 
and orally as a cancer treatment showed the drug as tol-
erable and safe, and with a complete remission in one 
case later reported.5,6 Cameron and Pauling later on 
showed that AA significantly prolonged survival in ter-
minal cancer patients.7 Their work was met by criticisms 
which were largely procedural; which led to a second 
investigation by the men and this time the new study 
showed that patients on high dose AA had a mean sur-
vival time of about 300 days longer than the untreated 
controls.8 However, two Mayo Clinic randomized, pla-
cebo-controlled prospective trials later disproved the ef-
ficacy of AA in cancer patients.9-10 However, the Mayo 
clinic trial was faulted on two grounds; only patients 
with colorectal cancer were used in the trial which is 
not representative enough of the various cancer types. 
More importantly, unlike Cameron’s subjects that re-
ceived both intravenous and oral AA, subjects in the 
Mayo Clinic trials received only oral AA. The impor-
tance of the route of administration determines the de-
gree of bioavailability of AA.11 

Subsequently, a gradually increasing number of pre-
clinical studies and some clinical studies have shown 
the efficacy of AA especially when given intravenous-
ly. Some experimental works have shown that high dose 
AA induce growth arrest in tumor cells both in vitro and 
ex vivo.11-13 Padayatty et al. in their work showed that 
peak plasma AA concentrations were higher after ad-
ministration of intravenous doses than after adminis-
tration of oral doses, and this difference increased with 
the dose. When AA was given at a dose of 1.25 g orally, 
it produced a peak plasma concentration of 134.8±20.6 
µmol/L, while the IV administration produced a peak 
plasma concentration of 885±201.2 µmol/L.14 The IV 
administration is thus seen as the pharmacologic basis 
of action. 

Aim
Material and methods A review of the literature regard-
ing ascorbic acid in the management of cancer was per-
formed using the PubMed database. The research was 
limited to abstracts and available full-text articles.

Analysis of the literature
Ascorbic acid homeostasis
Oral administration of AA is tightly controlled via intes-
tinal absorption, accumulation and distribution in tis-
sues, utilization and recycling, and renal excretion and 
reabsorption.15-16 These processes are ensured through 
different ways including passive diffusion, facilitated 
diffusion, active transport and recycling.17-19 After the 
ingestion of AA, it is absorbed into the bloodstream. 
The intestinal absorption of AA has been observed to 

be reduced with increased intake up to a certain dose; 
this is due to a decrease in the expression of the sodi-
um AA transporter sodium-dependent vitamin C trans-
porters (SVCT). AA is known to be taken up primarily 
into cells via SVCT 1 and 2, on the other hand, its ox-
idized form, dehydroascorbate (DHA), is taken up via 
the facilitated diffusion transporters glucose transport-
ers (GLUTs).15,19-20 The AA transporter SVCT1 which 
is expressed primarily in intestine, liver and kidney is 
known to mediate the renal reabsorption of AA. Mice 
lacking the SVCT1 gene have been reported to increase 
AA fractional excretion up to 18-fold with hepatic por-
tal AA accumulation nearly terminated; however, the 
intestinal absorption was mildly affected.21 SVCT2 on 
the other hand, which is expressed in almost all cells, 
contributes to the accumulation of AA in most tissues.22 
SVCT2 deficiency has been linked to perinatal mortal-
ity in mice, and elevated risk of spontaneous preterm 
births in humans.22,23 This is probably as a result of poor 
AA accumulation.

Oral intake of AA is tightly controlled as a result 
of these regulatory processes. Whereas, the intravenous 
administration of AA have been shown to achieve a 
70-fold higher plasma levels than even the highest oral 
tolerable dose.14 Interestingly, at these higher plasma 
concentrations via intravenous administration AA is 
able to kill cancer cells making it an emerging potential 
anticancer therapy. 

Fig. 1. Some of the different functions of AA

Antineoplastic activity of AA
AA has been shown to be an antioxidant through the 
suppression of free radicals generation, as well as at-
tenuation of oxidative damages caused by the free rad-
icals.24-25 Examples of its antioxidant activity can be 
found in the prevention of low-density lipoprotein oxi-
dation, and reduction in amyloid plaques in the nervous 
system.26-28  AA supplementation is also reported to in-
crease the levels of glutathione and thiols and negatively 
affects the levels of oxidative stress markers malondi-
aldehyde, and nitrites.29 AA also acts an anti-inflam-
matory in different pathological state, including cancer, 
sepsis, stroke etc.30-33 



865Ascorbic acid in cancer management – time for a second look

Antioxidant
Importantly, as part of its antioxidative properties AA is 
the reprogramming of the epigenome through the en-
hancement of the catalytic activity of the Jumonji-C do-
main-containing histone demethylases (JHDMs) and the 
ten-eleven translocation (TET) family of DNA hydroxy-
lases which drive histone and DNA demethylation in so-
matic cells; thus AA can modulate embryonic stem cell 
function, enhance reprogramming of fibroblasts to in-
duced pluripotent stem cells (iPSCs) and hinder the aber-
rant self-renewal of hematopoietic stem cells (HSCs).34-37 
In addition, AA also regulates the DNA methyl transfer-
ases (DNMT), the hypoxia inducible transcription factor 
alpha prolyl hydroxylases D (PHD) and the histone alpha/
beta hydrolase (ABH).38-40 This aforementioned activity 
of AA i.e. regulation of gene expression, is associated with 
its antioxidant function and has important role in can-
cer treatment. While antioxidant therapies have been pro-
moted as potential antineoplastic agents, caution should 
be applied in the indiscriminate prescription of antioxi-
dant supplements. Reactive oxygen species (ROS) are the 
primary targets of antioxidants, and are known to aid tu-
mour growth.41-42 This is not so in all cases; an excess of 
ROS can destroy cancer cells which is a mechanism used 
by some chemotherapy and radiotherapy.42-44 However, 
based on the notion that ROS aid tumor growth, anti-ox-
idant therapies have been muted as likely antineoplas-
tic therapies. This may not be so true, as some evidence 
shows that antioxidant activities are also deployed in tu-
mourigenesis and metastasis.45-48 Besides, Yasueda et al. in 
their systematic review were of the opinion that it is diffi-
cult to determine whether antioxidant supplements affect 
treatment outcomes.59 This position was also muted by 
Watson.50 Therefore, pro-oxidant therapies may be more 
amenable to some cancers. 

Pro-oxidant
High-dose AA may just be a potential candidate for 
pro-oxidant therapy. Different mechanisms have been 
proposed for the pharmacologic action of AA on can-
cer cells. One of them is the pro-oxidant action of AA 
on cancer cells. According to the pro-oxidant theory, AA 
pro-oxidant activity occurs at higher concentrations in 
the presence of iron. Iron is reduced by AA to Fe2+ in the 
presence of oxygen which leads to the formation of hy-
drogen peroxide (H2O2) and reactive oxygen species. The 
H2O2 further reacts with Fe2+ to generate a highly reac-
tive hydroxyl radical. However, in normal tissues H2O2 
generated is quickly neutralized by the appropriate en-
zymes e.g. catalase. These enzymes in tumour cells can 
be defective which lead to the persistence of H2O2 and 
subsequent cell damage.51-52 Another mechanism of can-
cer cell death involves DHA. DHA is an oxidized form 
of AA that is transported into the cell via the facilitated 
glucose transporters GLUTs.53 Cancer cells take in DHA 

and it is reduced back to AA.54 This intracellular reduc-
tion back to AA cause a depletion of glutathione in the 
cell, which consequently lead to an increase in ROS, ox-
idative stress, energy crisis and cell death.55-56 In another 
study, DHA is also reported to reacts with homocysteine 
thiolactone (cancer cells have high levels of homocysteine 
thiolactone) converting it to the toxic compound, 3-mer-
captopropionaldehyde and kills the cell.57 

AA and intracellular labile iron
AA is also reported to target iron (Fe) for various physi-
ological processes (Fig. 2). Iron is an important nutrient 
that plays various roles in the body such as oxygen ho-
meostasis, cellular metabolism and DNA synthesis.58-60 
Iron is normally transported across the cells in the form 
of a transferrin (Tf)-Fe3+ complex through the cell sur-
face receptor transferrin receptor 1 (TfR1) and then it is 
moved in via endocytosis. Fe3+ (ferric ion) is reduced to 
Fe2+ (ferrous ion) after acidification by the the endoso-
mal six transmembrane epithelial antigen of the prostate 
3 (STEAP3). Fe2+ is then transferred across the endoso-
mal membrane by divalent metal transporter 1 (DMT1). 
The Fe2+ forms part of the labile iron pool (LIP) ‒ a pool 
of chelatable and redox-active iron, which is serves as a 
crossroad of cell iron metabolism. LIP is known to pro-
mote formation of reactive oxygen species (ROS) via the 
Fenton chemistry.60,61 Fe2+ can be oxidized back to Fe3+ via 
the Haber-Weiss reaction with the formation of hydroxyl 
radicals (OH• and OH−).62 The presence of AA can pre-
vent Fe2+ oxidation by reductive accelerating the Fe3+/Fe2+ 
cycles, and lowering of the redox potential of Fe3+/Fe2+ 
through chelating effect, which leads to enhanced ROS 
production with more lipid, protein, and DNA oxidation. 
With these, AA is seen to play a role in cell death through 
ferroptosis ‒ a novel form of regulated cell death medi-
ated by iron-dependent lipid peroxidation.63 Ferroptosis 
have been muted as a promising approach in cancer ther-
apy.64,65 AA is thought to also play a role in the regulation 
of iron metabolism by the stimulation of ferritin synthe-
sis, inhibition of lysosomal ferritin degradation and re-
duction of cellular iron efflux.66 

Alteration in iron metabolism is generally associated 
with tumourigenesis which usually involves increased 
intercellular iron import and reduced iron export. For 
example, breast cancer patients have significantly high-
er levels of iron than normal controls.67,68 Thus, cancers 
with high levels of iron might be more susceptible to AA 
through increased production of free radicals via LIP. In 
a research reported by Xia et al., high dose AA, in the 
presence of iron, leads to the formation of highly ROS 
resulting in cell death of multiple myeloma cells.69

AA and hypoxia
The iron containing alpha-ketoglutarate-dependent hy-
droxylases (α-KGDD) are another substrate for AA. 
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α-KGDD catalyze oxidation reactions by incorporat-
ing a single oxygen atom from molecular oxygen (O2) 
into their substrates. Examples include asparagine hy-
droxylase and proline hydroxylase. They regulate the ac-
tivity of hypoxia inducible factor 1α (HIF-1α). HIF-1α 
is a hetero-dimeric transcription factor that is regulat-
ed by hypoxia. They can also be activated by non-hy-
poxic pathways.70,71 Prolyl hydroxylase domain (PHD) 
proteins are known to hydroxylate proline residues 
on HIF-1α in normoxic situations. After the hydrox-
ylation, the von Hippel Lindau tumor suppressor pro-
tein binds to the prolyl-hydroxylated HIF1-α, activating 
an E3-ubiquitin ligase which targets it for proteasome 
degradation. On the other hand, asparagine hydroxy-
lase hydroxylates HIF-1α at asparagine residues on the 
C-terminus, preventing the recruitment of p300/CBP 
co-activators, thereby making HIF-1α inactive. The re-
verse is the case in a hypoxic situation, with PHD and 
arginine hydroxylase suppressed leading to the trans-
location of HIF-1α into the nucleus where it dimerizes 
with HIF1-β (also known as aryl hydrocarbon nuclear 
receptor translocator (ARNT)). The HIF-1α- HIF1-β 
complex then binds to hypoxia response elements lead-
ing to the upregulation of a number of genes. HIF-1α is 
known to be up-regulated in various cancers.72,73 HIF-
1α also portends a poor prognosis in some cancers.74,75 
Due to its role in cancers, HIF-1α is seen as a viable tar-

get for cancer therapy. Most inhibitors work in an indi-
rect mode such as bortezomib and camptothecin and its 
derivatives.76 Recently, the FDA approved belzutifan, the 
first-in-class HIF inhibitor for adult patients with von 
Hippel-Lindau (VHL) disease – associated tumours.77 
AA has been shown to suppress HIF1-α-dependent can-
cer growth.78,79 It does this primarily through the in-
crease in activity of arginine and PHD hydroxylases, 
therefore decreasing HIF1-α action and cancer growth.80 
Research conducted on cancer patients show an associ-
ation between AA, HIF-1 activation, and cancer growth. 
Tissues from these patients showed that cancers with the 
most potent HIF1 function were those lacking AA in 
its tumour microenvironment, and patients with higher 
levels of AA had better outcomes.81,82 Thus, AA can pre-
vent cancer development through HIF. More researches 
will be needed to validate this. 

AA and NF-κB
Chronic inflammation is one of the hallmarks of carcino-
genesis.83 In the role of inflammation in cancer, one of the 
key players is the transcription factor nuclear factor-kap-
paB (NF-κB) which is responsible for signaling processes 
in immunity, inflammation, cell proliferation and sur-
vival. NF-κB consist of five structurally related members 
which are NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB 
and c-Rel, and together they are involved in the activa-

Fig. 2. AA is involved in the imbalance of LIP through the formation of the TF-Fe3+ complex which is later acidified by STEAP3, 
with Fe3+ reduced to Fe2+. The accumulated Fe2+ generates LIP which interacts with AA and oxygen to produce DHA and 
Fe3+ which later produce ROS through the Fenton reaction. The ROS can lead to cancer cell death through the process of 
ferroptosis and apoptosis. AA can also act as a co-factor for TET enzymes leading to some epigenetic modifications 
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tion of certain target genes by binding to the κB enhancer 
– a specific DNA element, as hetero- or homo-dimers.84 
In the quiescent cell, NF-κB typically binds to its inhibi-
tors IκB (IκBα, IκBβ, IκBγ, IκBε, Bcl-3, p100, and p105) 
in the cytoplasm making it transcriptionally inert. How-
ever, upon stimulation IκB is phosphorylated by IκB ki-
nase (IKK), which cause the release of NF-κB and its 
translocation into the nucleus where it induce the up-
regulation and transcription of target genes involved in 
pro-inflammatory response including cyclooxygenase-2 
(COX-2) and inducible nitric oxide (NO) synthase. Inter-
estingly, NF-κB is involved in many aspects of cancer de-
velopment and survival, and it is a target for many small 
molecules. NF-κB is also known to be regulated by re-
dox control mechanisms; thus, its actions can be adjusted 
based on ROS concentration.85-89 This activity is bidirec-
tional.90 It has been reported that low concentrations of 
ROS activate the IKK/IκB/NF-κB signal pathway, where-
as high concentrations of those inhibit the activation.91 
Du et al. showed that AA via its oxidative product DHA, 
could inhibit NF-κB through massive ROS generation 
mediated by intracellular glutathione and copper ions.91 
Studies have shown that AA can inhibit NF-κB through 
other mechanisms. AA has been reported to block the ac-
tivation of NF-κB by Tumor necrosis factor-alpha (TNF 
alpha) through the activation of p38 Mitogen-Activated 
Protein Kinase (MAPK), and also DHA directly inhibit-
ed IKKB and IKK alpha enzymatic activity in vitro in-
dependent of p38-MAPK, whereas AA did not.92-94 These 
anti- NF-κB activities were ROS- independent. Howev-
er, it is not all gloom. AA has been shown to be involved 
in the epigenomic and transcriptomic remodeling of 
monocyte-derived dendritic cells (DC). The P65 sub-
unit of NF-κB is known to interact with TET2 protein of 
the epigenome in DCs, and during such interactions, AA 
triggers an extensive demethylation at NF-kB/p65 bind-
ing sites together with concordant upregulation of anti-
gen-presentation immune response-related genes during 
DC maturation.95 In addition, AA causes an increase in 
the production of tumor necrosis factor-beta (TNFβ) in 
DCs through NF-κB; the selective inhibition of NF-κB I 
DCs is reported to block maturation and proliferation of 
T cells.96,97 These studies show that AA could play a role in 
some cancers with high NF-κB activity. 

AA and epigenetic regulation
The TET proteins are a part of the α-KGDD – a family of 
non-heme proteins, that are involved in the hydroxylation 
of 5-methylcytosine (5mC) residues to 5-hydroxymethyl-
cytosine (5hmC) leading to demethylation of DNA res-
idues and activation of certain gene transcriptions (Fig. 
3). This epigenetic regulation is an important hallmark in 
many malignancies. In solid tumours, TET2 mutation is 
uncommon.98 However, it is frequently mutated in hae-
matological cancers.99 DNA hypermethylation as a result 

of TET2 mutation is associated increased risk of MDS 
progression, and poor prognosis in AML.100,101 AA is an 
epigenetic regulator. It acts as a cofactor for optimal TET 
activities by reducing Fe3+ and Fe2+ which results in ac-
tive DNA demethylation. In addition, mutations in the 
enzymes isocitrate dehydrogenase 1 and 2 (IDH1 and 
IDH2) lead to metabolic alterations and the formation of 
2-hydroxyglutarate (2-HG), an oncometabolite that can 
inhibit the activity of α-KGDD such as ten-eleven trans-
location (TET) enzymes reducing 5hmC, boosting DNA 
methylation and leading to an inhibition of normal cell 
differentiation. In an AML model, AA was shown to in-
duce an IDH-dependent reduction in cell proliferation 
and an increase in expression of genes involved in leuko-
cyte differentiation.102 Also, the hypomethylating agents, 
azacitidine and decitabine are cytidine analogs that cause 
DNA demethylation as a result of DNA methyltrans-
ferase-1 (DNMT-1) inhibition; including being active 
in TET2 mutated haematologic malignancies.103-105 Ge-
recke et al. showed that addition of AA to hypomethylat-
ing agents caused the increased expression of the tumour 
suppressor p21 (CDKN1A), and induction of apopto-
sis.106 A clinical trial (NCT02877277) involving MDS 
and AML patients showed that AA supplementation in 
patients on hypomethylating agents induced epigene-
tic changes.107 While TET2 is known to have a pleiotro-
pic role in hematopoiesis, it is equally known to promote 
leukemogenic predisposition especially in haematopoiet-
ic stem cells through its regulation of access of some key 
transcription factors to enhancers of target genes.108 AA 
has been found to strengthen the DNA demethylation by 
TET2 in haematopoietic stem cells, thereby suppressing 
leukemogenesis and aiding lineage differentiation.109-112 
Thus, AA can play a role in the prevention and manage-
ment of haematological malignancies. A very recent clin-
ical trial published by Taira et al. showed that AA can also 
boost DNA demethylation in TET2 germline mutation 
carriers strengthening the case for AA supplementation 
in haematological malignancies.113

Fig. 3. The TET enzymes are involved in the catalysis of 
5-methylcytosine (5mC) to 5-hydroxymethylcytosine 
(5hmC) with AA as a co-factor through the transfer of an 
electron from Fe2+ to Fe3+, and eventual activation of TET 
enzymes
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AA and cancer immunotherapy
One of the modes of cancer resistance is immune evasion; 
this is a mechanism through which cancer cells camou-
flage themselves from immune cells of the body prevent-
ing their detection and destruction. These mechanisms 
are important for cancer progression and metastasis.114 
Furthermore, most subset of immune cells are fingered in 
cancer biology.115 One way cancer cells impair immuni-
ty is through the high expression of immune checkpoint 
proteins such as programmed cell death 1 (PD-1) and 
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-
4). The immune checkpoint proteins naturally serve as 
costimulatory/coinhibitory molecules that provide the 
necessary checkpoint regulating T cells and other APCs’ 
interactions as well as balancing immune homeostasis.116 
However, cancer cells express them as a way to suppress 
the immune system and escape from immune surveil-
lance.117 Anti-checkpoint inhibitors were therefore devel-
oped for the management of cancers that express them. 
Ipilimumab, an anti-CTLA-4 became the first check-
point inhibitor to be approved in 2011 for the manage-
ment of metastatic melanoma.118 Others like nivolumab 
and pembrolizumab later followed. Currently, anti-PD-1 
(nivolumab and pembrolizumab), anti-PD-L1 (Atezoli-
zumab, avelumab, and duravulumab), and anti-CTLA-4 
(ipilimumab, tremelimumab), are the FDA-approved 
checkpoint inhibitors for the management of a broad 
range of cancers. However, increased toxicities and treat-
ment failures were some of the challenges encountered 
in the clinics.119,120 Thus, reducing the toxicity of check-
point inhibitors, while increasing their efficacy is an un-
met clinical need. One way of achieving this, is the use of 
intravenous AA in pharmacological doses.121 

AA has been shown to enhance cancer immunother-
apies in both in vivo and in vitro studies. In a very recent 
study published, Burkard et al. were able to verify the effi-
cacy of high dose AA to kill melanoma cells both in vitro 
and in vivo; and how it also exert their effect either alone 
or in combination with the anti-mouse checkpoint inhib-
itor antibody synergistically.122 In another study, Luchtel 
et al. showed that the combination of AA with a check-
point inhibitor could have significant activity in can-
cer treatment. Their evaluation was the combination of 
high dose AA with a checkpoint inhibitor in a lymphoma 
mouse model. Their findings were that AA i) increases 
immunogenicity of lymphoma cells; ii) enhances intra-
tumoral infiltration of CD8+ T cells and macrophages; 
and iii) synergizes with anti-PD1 checkpoint inhibition 
in a syngeneic lymphoma mouse model via marked ac-
tivation of cytotoxic cells (cytotoxic T cells and NK cells) 
and antigen presenting cells.123 In their own study, Magri 
et al. showed that a combination of AA with anti-PD1 or 
anti-CTLA4 in mice resulted in a significant reduction 
of tumour volume in breast, pancreatic and colonic can-
cers.124 Just like the Luchtel’s group, they also reported an 

increase in T cell infiltration of the tumour microenvi-
ronment.124 In the same vein, a recent study by Peng et al. 
showed that a combination of AA and PD-L1 inhibitor in 
murine renal cell carcinoma caused increased intramural 
infiltration of T cells as well as the expression of chemok-
ines and cytokines.125 

AA has equally been shown to contribute to im-
mune defense especially the innate and adaptive im-
mune system. The immune cells especially macrophages 
and neutrophils are known to accumulate AA which 
they use to protect themselves against reactive oxygen 
species and enhance chemotaxis and phagocytosis.126-128  
Neutrophil extracellular traps (NETs) ‒ net-like struc-
tures composed of DNA-histone complexes and pro-
teins released by activated neutrophils and are involved 
in many disease state, have been identified in neutro-
phil loss, tumour progression and metastasis as well as 
the promotion of T cell exhaustion.129-131 A study by Mo-
hammed et al. showed that in vitro administration of 
AA to human neutrophils caused a decrease in phorbol 
ester-induced NETosis.132 In another study, AA incubat-
ed with human neutrophils from septic patients with 
reduced chemotactic and phagocytic activities showed 
a   decrease in spontaneous NETosis formation and an 
improvement in neutrophil function.133 Like the phago-
cytes, B, T lymphocytes and NK cells are also known to 
accumulate high levels of AA.134,135 It is not certain why, 
though it is believed for antioxidant protection. AA has 
been linked to the development and maturation, pro-
liferation and differentiation of the lymphocytes.136-139 
These activities of AA on immune cells have been muted 
to benefit chimeric antigen receptor (CAR) cells to en-
hance their efficacy against cancer cells.140,141 Kouakanou 
et al. showed that addition of AA during CD19-CAR T 
cell production enforces a stem cell memory–like phe-
notype and enhance anti-tumour function.140 Huijskens 
et al. showed this was also applicable to NK cell thera-
py.142 Recently, γδ T cells have been shown to be poten-
tial effector cells in cell-based cancer immunotherapy.143 
This has attracted a fast track designation by the FDA for 
the allogeneic γδ T cells for the treatment of relapsed or 
refractory B-cell non-Hodgkin lymphoma.144-146 AA has 
been shown to enhance the proliferation and effector 
functions of human γδ T cells.147 This ability to expand 
γδ T cells as well as enhance their effector function have 
led to the first adoptive transfer of allogeneic γδ T cells 
expanded in vitro in the presence of vitamin C into pa-
tients with solid cancers, and which showed increased 
survival in those patients.148 AA has effect on cancer im-
munotherapy, but more clinical studies would need to 
be carried out to determine just how useful they are. 

AA and clinical studies
AA is used by many complementary and alternative 
cancer therapists, and for the past decade or more there 
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have been a steady rise in the evaluation of AA as an an-
tineoplastic therapy. Some of these trials evaluated its 
use as a monotherapy or as combination therapy with 
standard chemotherapies. While the pre-clinical studies 
have shown potentials, the results of the clinical studies 
have been mixed. Zasowska-Nowak et al. in their review 
reported that from various studies done AA was inef-
fective in human studies conducted in advanced-stage 
cancer patients.150 This was a bit different from a sys-
tematic review reported by Mohseni et al. who found 
that high dose AA with chemotherapy resulted in an 
increase in overall survival (OS); however, as a mono-
therapy, AA was tolerable and safe but without any ob-
jective tumour response.151 Nielsen et al. in their study 
on prostate cancer patients reported no signs of disease 
remission.152 This may have been so, because the dos-
age and frequency administered in this study was much 
lower compared to those reported by Stephenson et al. 
and Hoffer et al., who reported stable disease in 3 and 2 
patients respectively, but also without objective tumour 
response.153,154 While AA monotherapy may be less effi-
cacious, however, a handful of random case reports have 
shown that AA monotherapy could possibly be effica-
cious in the treatment of some cancers.155-157 This was 
best exemplified in a series of case reports by Raymond 
et al. among some patients treated in Singapore.158 The 
case of an AML patient in palliative care who achieved 
complete remission for 2.5 years while on high dose 
AA also shows the efficacy of AA monotherapy.159 Cur-
rently, some AA monotherapy studies are ongoing 
(NCT03613727) (NCT03682029).160,161 

Clinical studies of AA in combination therapy
Some studies of AA as a combination therapy with che-
motherapies have also been reported. However, they 
were carried out with only a limited number of pa-
tients, and no double blind randomzed trials. Some of 
the combinations have shown promise in some can-
cers. In a phase 1 clinical study of patients with meta-
static gastric and metastatic colorectal cancers given IV 
AA at 1.5 g/kg once daily with mFOLFOX6 or FOLFI-
RI with or without bevacizumab in a 14 day cycle, Wang 
et al. reported a favourable safety profile and an objec-
tive response rate (ORR) of 58.3% with a disease con-
trol rate of 95.8%.162 This result spurred a randomized, 
open label, multicenter phase 3 study of IV AA + FOLF-
OX ± bevacizumab (experimental group) vs. FOLFOX ± 
bevacizumab alone (control group). However, in the re-
cently published result the experimental group failed to 
show superior progression free survival (PFS) compared 
to the control group [median PFS, 8.6 vs. 8.3 months; 
HR, 0.86; 95% confidence interval (CI), 0.70–1.05; P = 
0.1]; but patients with RAS mutation had significantly 
longer PFS (median PFS, 9.2 vs. 7.8 months; HR, 0.67; 
95% CI, 0.50–0.91; p=0.01) with AA added to chemo-

therapy.163 Some other small successes have been re-
corded in AA plus chemotherapy combination therapy. 
A phase 1 clinical trial (PACMAN) of IV AA and gem-
citabine in patients with metastatic or unresectable pan-
creatic adenocarcinoma showed good clinical safety and 
tolerability, and has now been escalated to a random-
ized phase 2 trial and it’s currently ongoing (PACMAN 
2.1) (NCT02905578).164,165 Polireddy et al. also report-
ed a phase I/IIa clinical trial (NCT01364805) in pancre-
atic cancer patients using IV AA and gemcitabine. The 
study showed an OS of 15.1 months with one of the par-
ticipant showing significant tumour response.166 Their 
study showed that AA has a multi-targeting mecha-
nism of action on pancreatic cancer cells including ATP 
depletion and increased α-tubulin acetylation. AA has 
been shown to have good activity against RAS-mutated 
cancers, and since more than 90% of pancreatic cancers 
harbor the RAS mutation, AA could possibly have some 
activity against pancreatic cancers. In addition, AA has 
been shown to alter cancer metabolism.163,167-170 A pre-
clinical study of AA plus buformin on AML cell lines 
shows that AA inhibits glucose metabolism through 
interfering with hexokinase 1/2 and GLUT1 functions 
in hematopoietic cells as well as depletes ATP pro-
duction.171 Currently, a phase 2 clinical trial of AA in 
combination with metformin in some solid tumours is 
ongoing (NCT04033107).172

AA and haematological malignancies in clinical studies
A number of clinical studies have also been done with 
haematological malignancies (Table 1). Some of the 
studies involved the use of arsenic trioxide. In a clin-
ical study (ChiCTR1800018811) by Qian et al. which 
aimed at comparing the efficacy and tolerability of an 
arsenic trioxide/bortezomib/ascorbic acid/dexametha-
sone (ABCD) regimen with efficacy and tolerability of 
a bortezomib/dexamethasone (BD) regimen in patients 
with newly diagnosed myeloma, the ABCD regimen 
showed a greater response rates (above VGPR) than the 
BD regimen. It also showed significantly improved PFS 
and better tolerability with lower bone marrow suppres-
sion especially in patients with low or standard risk dis-
ease.173 In two similar phase I/II study by Berenson et 
al., arsenic trioxide/bortezomib/ascorbic acid (ABC) 
combination therapy in patients with relapsed/refrac-
tory multiple myeloma was well tolerated and showed 
an objective response rate (ORR) of 27% in the heavi-
ly pretreated study population; and also the melphalan, 
arsenic trioxide (ATO) and ascorbic acid (AA) (MAC) 
combination therapy for patients with multiple myelo-
ma showed an ORR of 48% with good safety and toler-
ability.174,175

Similarly, in patients managed for acute promyelocytic 
leukemia (APL) given oral arsenic trioxide, all-trans reti-
noic acid and ascorbic acid (popularly known as the triple 
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A regimen), the leukemia-free survival (LFS) and overall 
survival (OS) rates were 100% at 3 years and 94.1% at 5 
years respectively.176 In a similar study, APL patients who 
achieved first complete remission (CR) and were placed 
on triple A maintenance had a 5-year and 10-year rates 
of relapse-free survival (RFS) of 89% and 85%, and OS of 
94% and 87%, respectively.177 The triple A regimen was 
also shown to be safe and associated with long term sur-
vival in patients. The use of the Triple A regimen in APL 
as maintenance therapy is still ongoing in another study 
(NCT04251754).178-180 AA is also known to induce DNA 
demethylation at the cellular level. In a clinical study by 
Zhao et al., 73 elderly AML patients treated with AA plus 
a combination of decitabine, cytarabine, aclarubicin and 
granulocyte colony-stimulating factor (DCAG) had a 
higher  CR (79.92% vs. 44.11%; p=0.004) after one cy-
cle of chemotherapy, and a median OS (15.3 months vs. 
9.3 months, p=0.039) compared with the DCAG only 
group.181 Welch et al., in a clinical phase 1 study of AA, 
decitabine and arsenic trioxide in patients with MDS and 
AML observed complete remission with incomplete blood 
count recovery (CRi) in one patient, and stable disease 
(SD)  in five patients after four cycles of therapy.182 A sug-
gestion for a phase II trial was muted. TET2 is mutated in 
many haematological malignancies, and plays a major role 
in epigenetic modulation alongside prognosis of myeloid 
neoplasms.99,101,183 Due to the role AA play as an epigen-
etic modifier, targeting demethylases with AA in combi-
nation therapy has been muted as therapeutic strategy.34 
Currently, the PREACH-M study a phase II trial of the 
use of AA with azacitidine and lenzilumab in CMML pa-

tients (ACTRN12621000223831) is ongoing.184 Other sim-
ilar clinical studies using CMML, MDS and AML patients 
(NCT03682029) (NCT03999723) are also ongoing.160,185 

Time for a second look?
The jury is out, and after several pre-clinical and clini-
cal studies on the potentials of AA as an antineoplastic 
agent, a verdict is yet to be reached. The pertinent ques-
tion still remains, should randomized clinical trials be 
organized to test for the benefit of AA in cancer? For 
this author it is an affirmative yes. However, this should 
be within the confines of a well-designed randomized 
clinical trial (possibly, double-blinded) and prefera-
bly as a combination therapy; the phase (induction or 
maintenance) should also be determined. 

Different issues needs to be resolved for a standard-
ized randomized clinical trial, including dosage and 
frequency which can be dependent on the route of ad-
ministration. Padayatty et al. determined that only an 
I.V administration can produce a pharmacologic dose 
for anti-tumour activity.14 However, oral AA has been 
shown to have some activities.107 So under which con-
ditions oral AA can be used need also to be determined. 
In the VITALITY study by Wang et al., AA with chemo-
therapy was shown to induce a significantly longer PFS 
in CRC patients with RAS mutation than patients on 
chemotherapy alone.163 In the EudraCT 2018-000155-41 
clinical trial, Taira et al. showed that AA supplementa-
tion reinforces DNA demethylation in TET2 mutation 
carriers; Das et al. equally reported a complete remis-
sion in an AML patient with TET2 mutation on AA.113,159 

Table 1. Clinical trials using ascorbic acid as anti-neoplastic therapy in hematological malignancies
Trial number Cancer type Phase Study design Combination AA dose

ChiCTR1800018811173 Multiple myeloma II Randomized
Arm 1: AA + chemotherapy (ABD) 1000 mg IV days 1 to 3, 8–10, and 15–17 

over 30 minsArm 2: Chemotherapy (BD)

NA174 Multiple myeloma NA Single arm Bortezomib and Arsenic Trioxide
1 g IV on days 1, 4, 8, and 11 of a 21–day 

cycle for a maximum of 8 cycles

NCT04251754176 Acute promyelocytic 
leukemia

III Observational Arsenic Trioxide and All trans retinoic acid
1 g/day for 6 weeks

(oral)

NCT03682029160 Myeloid malignancies II
Interventional
(randomized)

Placebo 1 g daily for 12 months (oral)

NCT03999723185 Myeloid malignancies II
Interventional
(randomized)

Arm 1: AA + Azacitidine
1 g daily (oral)

Arm 2: placebo + Azacitidine

ACTRN12621000223831184 Myeloid malignancies II Non-randomized, open trial
Arm 1: (TET2 mutation) azacitidine

IV 30g on days 1–5, 8–9 or days 1–7Arm 2: (RAS  +/- TET2 mutation) azacitidine and 
lenzilumab

NCT03418038 Lymphoma II

Interventional
(Randomized)

Arm 1: Ascorbic acid + combination chemotherapy

IV on days 1, 3, 5, 8, 10, 12, 15, 17 and 19

Arm 2: Placebo + combination chemotherapy (rituximab 
+ ifosfamide + carboplatin + etoposide D1–3; rituxi-

mab + cisplatin + cytarabine + dexamethasone if MR or 
SD after 2 courses)

  Arm 3: Ascorbic acid + combination chemotherapy 
(ifosfamide + carboplatin + etoposide or cisplatin 
+ cytarabine + dexamethasone or gemcitabine + 

dexamethasone + cisplatin or gemcitabine + oxaliplatin 
or oxaliplatin + cytarabine + dexamethasone)
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This means clinical trials can be designed for AA as a 
targeted therapy, though AA is a known multitargeting 
agent in cancer.186 This “promiscuity” as a multi-target-
ing agent can make the development of a biomarker as 
an indicator of response to AA therapy rather problem-
atic. Clinical markers and response such as tumour size 
shrinkage, overall survival and improved quality of life 
may just be more durable measurements in such cases. 

AA has also been shown to attack cancer by modu-
lating the immune system.187 Thus, pharmacological dose 
of AA can potentially serve as an adjunct anti-neoplastic 
therapy.141,147 Clinical trials are required to test the effi-
cacy of AA as a potential adjunct anti-neoplastic thera-
py. In pre-clinical studies, AA has been shown to have 
synergism with checkpoint inhibitors.122,123 AA has also 
been shown to synergistically potentiate the cytotoxicity 
of targeted therapies ibrutinib, venetoclax and idelalisib 
in CLL.188 Further clinical investigations would be needed 
to determine the clinical benefits. While AA is known to 
synergize with many anti-neoplastic drugs, it antagonizes 
in some cases.189 Dhahri and Chhabra reported of a case 
of impaired effect of AA on imatinib in a CML patient.190 
Heaney et al. in their pre-clinical study also reported that 
AA antagonizes the cytotoxic effect of some commonly 
used chemotherapeutic drugs including imatinib.191 This 
inhibitory effect is also reported with bortezomib. It has 
been reported that AA directly inactivates bortezomib ac-
tivity by forming a tight but reversible complex through 
its vicinal diol group.192 However, the dose used for this 
study was not pharmacological and it was in oral form. 
AA is also muted to be able to inactivate ixazomib be-
cause of the boronate moiety. However, in a clinical study 
reported by Bolaman et al., AA enhanced the cytotoxic 
effect of carfilzomib-lenalidomide-dexamethasone in re-
lapsed/ refractory myeloma patients who initially did not 
respond to the treatment; thus AA may have no effect on 
carfilzomib at pharmacological dose.193-199 In a phase I-II 
clinical trial (NCT01050621), Hoffer et al. recommended 
carrying out trials in higher numbers in order to identi-
fy specific clusters of cancer type, chemotherapy regimen 
and AA combination in which exceptional responses are 
observed to justify a more focused clinical trial.196 This 
position is appropriate. The crosstalk between Cabanil-
las and his colleagues is a good example that a more fo-
cused randomized clinical trial is needed to put AA in 
a proper position for cancer therapy.197-199 Further inves-
tigations of AA action on proteasome inhibitors will be 
needed. In general, the pharmacokinetics and pharma-
codynamics of AA should be considered in the design of 
any clinical trial. 

Conclusion
AA is reported to be generally low in cancer patients. 
The relationship between AA and cancer is a sub-
ject of intense study. While current reports on the an-

ti-neoplastic activity of AA is mixed, it is known to be 
well-tolerated and possibly play a role in supportive 
care in cancer. Unlike recent innovative therapies, AA 
is more affordable for everyone. The use of AA in com-
bination with standard cancer therapies should be fur-
ther explored in randomized clinical trials. It is time for 
a second look. 
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